The Class AB Transconductance Input Stage


       AB_input.jpg

The invention of the Class AB transconductance

input stage was in response to what had been learned 

using by linearizing diodes for the LM13600/LM13700.


The LM13600 really started out just as a practice layout

for a new IC Mask designer. But after the layout

was done, somebody came up with the crazy idea to

turn it into an actual product.



          lM13700.jpg




The need was for a practice layout. The LM3080 was being

second sourced. Why not just layout a stereo LM3080?

The linearizing diodes in the LM13700 were thrown in 

at the last minute because the 16pin dip package had just 

come out, and an extra pin was available. These diodes turned 

out to have a few surprises to them which was discovered later.  


          LinearDiodes.jpg



The linearizing diodes at the time were well suited

to a +/-15V supply world. Signal magnitudes were

often set to several volts. At such levels,

resistors could be used without introducing much

noise, or distortion, or offset.


The problem with the LM3080 was the trade off between

signal to noise and distortion. Applying a larger level

of input voltage will improve the signal to noise ratio,

at the expense of distortion. 


        linearTHD.jpg


While the LM3080 by itself has noticeable distortion,

most customers don't appear to use the linearizing diodes. 

The cost of using them being four resistors. Naturally

customers want the distortion to go away for free.

Some other Operational transconductors amplifiers

came out which put the whole pre-distortion circuitry on

chip. The tradeoff here is that the pre-distortion circuitry

needs to run at a fair amount of supply current so as to

not degrade the signal to noise ratio. At that time however,

having low supply current was not an issue. 


An alternative method was to use distortion cancellation.

A class AB method similar to what is shown below had

been discovered just after the LM13600/LM13700 came out. But this 

idea was not developed since it was a shear miracle that the 

LM13600/LM13700 actually became a product. There was obviously

no support from marketing. 



Cross-coupled differential amplifier Taiwa Okanobu  4965528

Inventor: Taiwa Okanobu

Assignee: Sony Corporation


      Xcoupled.jpg


An improvement to the circuit above would be to tie the collectors of

Q2 and Q4 to the supply. This would make the stage operate

in more of a Class AB format, and would improve both the signal

to noise ratio and offset. This is a distortion cancellation technique. 

The scale value N is choices to give out the optimum

distortion cancellation. 


          THDcancell.jpg




The challenge was to lower distortion and come as close as 

possible to the signal to noise ratio of a two transistor 

input stage. Transconductors amplifiers have a headroom problem. 

They can usually only put out a maximum amount of output current. 

The next step was to find a way to increased the output current 

headroom while still using the Class AB techniques.




            AB_input.jpg



A Class B stage is a circuit where a essentially the signal path is

off when the input signal is zero. Class B stages have a crossover

distortion problem. A Class AB stage is a circuit where the signal path 

is barely on for a zero input signal. This can greatly reduce

both noise and dc offset. But what if the B stage happens to be able

to also take gain? The amount of A biasing can be still adjusted to optimum

distortion cancellation. The circuit above further extends the output

current head room by providing current gain while in the B mode. 


With this type of input stage, there are two area scaling ratios.

Ratio N will set how much current gain can be taken in the B mode.

Ratio M adjust the A bias for optimum distortion cancellation.



                    ABTHD.jpg


The optimum sizes for M and N appear to be 5x and 10x. 

Such ratios appear to push the 1% distortion level to about

a +/-140mV magnitude. A two transistor input stage needs

to have its input signal below +/-18mV to have less than

1% distortion. 





                                          ^  VC

              _____              R3      /_\       R4

             |     |         _/\  /\  /\__|_/\  /\  /\_          _____

             |    _|_       |   \/  \/        \/  \/   |        |     |

            _|_  / _ \IB1   | -> 1.666x IBA1           |       _|_    |

            \\\  \/ \/      |________          ________|   IB2/ _ \  _|_

                 /\_/\              |         |               \/ \/  \\\

                 \___/              |VCN3     |               /\_/\

                   |        VBN1    |         |       VBN2    \___/

             ^ VC  |___________     |     VCN4|      ___________|

            /_\    | QN1 |  QN2|    |         |     |QN5   |QN6 |

            _|_    |    _|    _|   _|         |_    |_     |_   |

           /VCC\   |__|'____|'___|'   QN3  QN4  `|____`|_____`|_|

           \___/      |`->  |`-> |`->         <-'|  <-'|   <-'|

             |        5X |  1X |    |10X   10X|     |1X    |5X

            _|_          |     |    |         |_____|      |

            ///          |     |____|_____     VEN4 |      |

                         |      VEN3      |         |      |

                         |_______________/|\________|      |

                         |                |________________|

            VBP1=0V    <-                                   ->

                ____|' QP1           OUT                  QP2 `|_

     VIN      _|_   |`_               _/\  /\  /\_          _ '|_|_

      ______ /   \     _|_     VCN3 _|_  \/  \/  _|_       |    ///

     |VAC1  |EGin |    ///     ___ /   \   ROUT  ///      _|_

    _|_    _|     |            ___| GDIF|                 \\\

   /AC1\   | \___/            VCN4 \___/

   \___/   |___|                    _|_

     |        _|_                   \\\

    _|_       ///

    \\\



Transistors QP1 and QP2 provide the input to this differential

stage. Assuming no offsets, when to two inputs are at 0V,

transistors QN1,QN2,QN3,QN4,QN5 and QN6 all share the same 

emitter base voltage. The current scaling will follow the

area ratios. For instance QN1 will have five times the current

of QN2. Since bias current IB1 is seeing a 6X NPN diode, the

current of QN2 will be 1/6 of IB1. And QN3 will have 10/6 the

current of of IB1.



                                          ^  VC

              _____              R3      /_\       R4

             |     |         _/\  /\  /\__|_/\  /\  /\_          _____

             |    _|_       |   \/  \/        \/  \/   |        |     |

            _|_  / _ \IB1   |  -> 10x IBA1             |       _|_    |

            \\\  \/ \/      |________          ________|   IB2/ _ \  _|_

                 /\_/\              |         |               \/ \/  \\\

                 \___/              |VCN3     |               /\_/\

                   |        VBN1    |         |       VBN2    \___/

             ^ VC  |___________     |     VCN4|      ___________|

            /_\    | QN1 |  QN2|    |         |     |QN5   |QN6 |

            _|_    |    _|    _|   _|         |_    |_     |_   |

           /VCC\   |__|'____|'___|'   QN3  QN4  `|____`|_____`|_|

           \___/      |`->  |`-> |`->         <-'|  <-'|   <-'|

             |        5X |  1X |    |10X   10X|     |1X    |5X

            _|_          |     |    |         |_____|      |

            ///          |     |____|_____     VEN4 |      |

                         |      VEN3      |         |      |

                         |_______________/|\________|      |

                         |                |________________|

          VBP1=+1V     <-                                   ->

                ____|' QP1           OUT                  QP2 `|_

     VIN      _|_   |`_               _/\  /\  /\_          _ '|_|_

      ______ /   \     _|_     VCN3 _|_  \/  \/  _|_       |    ///

     |VAC1  |EGin |    ///     ___ /   \   ROUT  ///      _|_

    _|_    _|     |            ___| GDIF|                 \\\

   /AC1\   | \___/            VCN4 \___/

   \___/   |___|                    _|_

     |        _|_                   \\\

    _|_       ///

    \\\



But when Transistor QP1 is turned off, the output current of

QN3 will get much greater. In other words "head room" is being

added to the output magnitude. Now building a differential

input stage using eight transistors instead of two will of course add

both offset and noise. But in the case of transconductance 

amplifiers, extending the output swing can have a large effect

on the current mirrors in its following stages. 



                 ________________________________________

                |  VCC      |           |  VCC      |   _|_

                |           |           |           |  /VCC\

                 ->       <-             ->       <-   \___/

                QP1`|___|'QP2           QP4`|___|'QP5   _|_

                 _ '| | |`_              _ '| | |`_     ///

                |     |____|VTA2        |     |____|VTA5

                |          |            |          |

                |         <-            |         <-

                |_______|' QP3     _____|_______|' QP6

                |VTA1   |`_       |      VTA4   |`_

                |          |      |                | OUT

                |          |_____/|\___            |

                |                 |    |           |       R1 1 Ohm

                |           ______|    |           |___/\  /\  /\_

               _|          |_          | VTA6     _|     \/  \/   |

           __|'QN1       QN2 `|__      |________|'QN5            _|_

         _|_ |`->          <-'| _|_    |        |`->             ///

        /VIN\   |          |    ///    |           |

        \___/   |__________|VE         |     ______| VTA7

          |      _|_        _____      |_    |    _|

         _|_    / _ \     _|_   _|_   QN3`|__|__|'QN4

         ///    \/ \/    /VEE\  ///    <-'|     |`->

                /\_/\    \___/         |           |

                \___/     _|_         _|_         _|_

         IBIAS   _|_      \ /         \ /         \ /

                 \ /       V VEE       V  VEE      V

                  V



Transconductance amplifiers are not like ordinary amplifiers.

Offset and noise cannot be made to be dominated by what happens

at the input stage. A transconductance amplifiers like the

LM3080 has four matched pairs setting its offset and noise.

Say transistor QN1 has a 1mV offset compared to QN2. That means

that about 4% more current flows in QN1 than QN2. At the output, QN5

should see about 4% more current than QP6. But the same thing

would happen if 4% mismatch was applied to QP2, or QN4 , or QP4. 

So each matched pair will produce the same amount of output current 

error. Since offset and noise both add with power, the offset and 

noise of a LM3080 is about the square root of four or twice that of 

a simple two transistor differential input stage.


                 ________________________________________

                |  VCC      |           |  VCC      |   _|_

                |           |           |           |  /VCC\

                 ->       <-             ->       <-   \___/

                QP1`|___|'QP2           QP4`|___|'QP5   _|_

                 _ '| | |`_              _ '| | |`_     ///

                |     |____|VTA2        |     |____|VTA5

                |          |            |          |

                |         <-            |         <-

                |_______|' QP3     _____|_______|' QP6

                |VTA1   |`_       |      VTA4   |`_

                |          |      |                | OUT

                |          |_____/|\___            |

                |                 |    |           |       R1 1 Ohm

     VIN=+1V    |           ______|    |           |___/\  /\  /\_

               _|          |_          | VTA6     _|     \/  \/   |

           __|'QN1       QN2 `|__      |________|'QN5            _|_

         _|_ |`->          <-'| _|_    |        |`->             ///

        /VIN\   |          |    ///    |           |

        \___/   |__________|VE         |     ______| VTA7

          |      _|_        _____      |_    |    _|

         _|_    / _ \     _|_   _|_   QN3`|__|__|'QN4

         ///    \/ \/    /VEE\  ///    <-'|     |`->

                /\_/\    \___/         |           |

                \___/     _|_         _|_         _|_

         IBIAS   _|_      \ /         \ /         \ /

                 \ /       V VEE       V  VEE      V

                  V


But Transconductance amplifiers have a limited output current

swing. So the largest amount of current a LM3080 can put out

is about +/- IBIAS. Suppose IBIAS is set to 1uA. When the

input is zero, the total expected supply current should be about 

2uA. And each transistor should be drawing 500nA. 


    _________________________________________________________________________________

    |             |       |     |           |         VCC           |           |    |

    |        QP10 |       |     |  VCC      |                       |           |   _|_

     ->         <-      <-      |           |                       |           |  /VCC\

    QP9 `|____|'______|' QP11    ->       <-                         ->       <-   \___/

      _ '| |  |`__    |`__      QP3`|___|'QP4                       QP6`|___|'QP7   _|_

     |     |      |       |      _ '| | |`_                          _ '| | |`_     ///

     |_____|      |       |     |     |____|VTA2                    |     |____|VTA4

    _|_ VBIAS     |       |     |          |                        |          |

   / _ \          | IBIAS |     |         <-                        |         <-

   \/ \/          |       |     |_______|' QP5        ______________|_______|' QP8

   /\_/\ IBIAS    |       |     |VTA1   |`_          |  1.66 IBIAS   VTA3   |`_

   \___/          |       |     |          |         |                         | OUT

    _|_         __|       |__   |          |________/|\____________            |

    \\\        |             |  | 1.66 IBIAS         |             |           |

               |             |  |           _________|             |           |

               |  VBN1       |  |          |             VBN6      |           | OUT

               |___________  |_/|\________/|\________________      |           |

      ___      | QN1 |  QN2|    |          |     |QN5   |QN6 |     |           |___/\  /\  /\_

    _|_  |     |    _|    _|   _|          |_    |_     |_   |     |           |     \/  \/   |

    ///  |     |__|'____|'___|'   QN3   QN4  `|____`|_____`|_|     |           |             _|_

        _|_    MX |`->  |`-> |`->          <-'|  <-'|   <-'|       |           |             ///

       /VEE\         |     |    |NX      NX|     |1X    |MX        | VTA5     _|

       \___/         |     |    |          |_____|      |          |________|'QN9

        _|_          |     |____|______          |      |          |        |`->

        \ /          |                 |         |      |          |     VT6   |

         V           |________________/|\________|      |          |     ______|

                     |                 |                |          |_    |    _|

        VIN=0V     <-                  |________________|         QN7`|__|__|'QN8

              ___|'XQP1                                 ->         <-'|     |`->

            _|_  |`_                                   QP2 `|_     |           |

           /VIN\     |                                   _ '| |   _|_         _|_

           \___/    _|_                                 |    _|_  \ /         \ /

            _|_     \ /  VEE                           _|    ///   V  VEE      V

            ///      V                                 \ /

                                                        V VEE


But what happens when the input stage is using an AB biased 

Transconductance stage that is biased up to draw 2uA supply current? 

Well the AB bias technique causes most transistors to draw less 

current for a zero input signal. It turns out that transistors

QP3, QP4, QN7, QN8, QP6, and QP7 are are drawing about 3dB

less than 500nA compared to the LM3080. Now there are double the

number of matched transistor pairs. So twice as many transistor

pairs should increase offset and noise by 3dB. However the 3dB 

increase in both offset and noise is being applied to a transconductance

amplifier which is being biased at 3dB less current. Some extensive 

spice simulations can show that the output noise and offset current 

ends up about the same as for a LM3080.


The comparing the AB_Bias Input OTA to a LM3080 Input OTA

 

                                    AB_BIAS              LM3080 

1)  measure supply current        = 2.045uA              2.0uA 

2)  Measure Max output current    = +/- 2.016uA_pk       +/- .97uA_pk 

3)  Measure Max Vin extrapolate   = +/- 196mV_pk         +/- 51mV_pk 

4)  Measure Offset_V              = +/- 2.7mV_sd         +/- 1.6mV_sd 

5)  Measure Offset_Iout_%Imax     = +/- 1.36_%           +/- 3.2_% 

6)  Measure input noise_rtHz      = +/- 110nV_rms        +/- 56nV_rms 

7)  Measure 1% THD output current = +/- 1.50uA_pk        +/- .334uA_pk 

8)  Measure 1% THD input V        = +/- 146mV_pk         +/- 18mV_pk 

9)  Meaured Rgm = Vin/Iout        = 97KOhms              51KOhms 

10) Total Output Shot Noise       = 159pA_rms            151pA_rms 

11) Signal to Noise Clipping      = 79.0dB               73dB 

12) Signal to Noise 1% THD        = 76.4dB               63.5dB 



For 2uA of supply current, the output current has twice

the output magnitude because of the extended output

headroom. So for output signals at clipping levels,

there is a factor of two improvement in signal to noise. 

At 1% output distortion levels, there is a factor of 4.4x 

improvement in signal to noise. And this is all without 

drawing any more supply current than a LM3080. 


        LM324.jpg


It just so happens that there are other benefits to this input 

stage. Today there is the need to operate on a low voltage

single supply. The LM13600 was done in the days when +/-15V

supplies where common. The schematic for the LM324 shown above

describes the automotive market. Amplifiers now needs to 

run down to at least 5V, preferably 3V, or as low a voltage as 

possible. The LM324 introduced the concept of being able to

run the inputs down to and a little below ground.  The usual 

requirement is that the inputs can go 200mV below ground.


        AB_input.jpg


There is an addition feature if the input stage 

is build using lateral PNPs. A trick used for the LM324 and 

for that manner the LM741 can be used to protect the inputs. 


        LM741.jpg


The LM741 was designed in the days when making an Op Amp

fool proof was important. Reverse biasing NPN transistors

to the level of zenering them destroys them. It was discovered

that putting lateral PNP emitters (Q3 and Q4) in series with

NPN emitters (Q1 and Q2) can protect the inputs. Customers

like it when they can connect any input to any supply voltage

without doing any damage. 


      LinearDiodes.jpg


The pre-distortion diodes of the LM13700 really requires the 

signal to be at several volts magnitude such that resistors 

can resemble current sources. Today the needs are for low 

supply voltages, low supply currents, rail to rail output and 

inputs if possible. Time change, and so do the requirements. 


The following are the features that should now be available.


1)Distortion cancellation.

2)Better than twice the signal to noise ratio

3)Better than twice the signal to dc offset ratio

4)Input protection like a LM741

5)Inputs swing below ground like a LM324

6)Rail to Rail outputs are not too hard.

7)Low supply voltage ( 2 diodes and a sat)

8)Half a LM3080's supply current for the same output 

9)Input voltage maximum around +/- 200mV 

10)100X the speed if done in BiCmos


There are however some overlooked aspects to using linearizing 

diodes. These diodes happen to solve some important 

temperature scaling problems. If pre-distortion

stages get replaced by linearized input stages, these

temperature scaling issues still also needs to be taken into

account.


3.11.10_2.35PM
dsauersanjose@aol.com
Don Sauer
http://www.idea2ic.com/