* dsauersanjose@aol.com 10/21/08
* www.idea2ic.com
$*$
$*$

VIN	VIN	0	SIN(0 10m 10000) AC	10m	
R0	VIN	INP0	10K				
R1	INP0	0	1k				
B_OTA0	OUT0	0	$\mathrm{I}=$	$-1 * \mathrm{~V}(\mathrm{VIABC}) * \tanh ($ (v (INP0)	-v(INNO))/.052)
$\mathrm{C} \overline{0}$	OUT0	0	800p				
B_BUF0	BP	0	$\mathrm{V}=$	v (OUTO)			
R2	INNO	BP	20k				
R3	INN0	LP	20k				
R4	INN0	0	1k				
R5	BP	INP1	20k				
R6	INP1	0	1 k				
B_OTA1	OUT1	0	$\mathrm{I}=$	$-1 * v(V I A B C) * \tanh (($	v(INP1))/.052)	
$\mathrm{C} \overline{1}$	OUT1	0	800p				
B_BUF1	LP	0	$\mathrm{V}=$	v(OUT1)			
V_Iabc	VIABC	0	PWL	(0 1m 1m 0)			

.control

.end

To Covert PDF to plain text click below
http://www.fileformat.info/convert/doc/pdf2txt.htm
This code works with winspice.

FIGURE 14. Voltage Controlled State Variable Filter

The state variable filters have the beauty to them that the feedback independently defines the shape of the filter. The following two sites show the feedback level differences between Bessel and Butterworth filters.
http: //www.idea2ic.com/PlayWithSpice/pdf/Bessel_6P_State_Variable_txt.pdf http://www.idea2ic.com/PlayWithSpice/pdf/Butterworth_6P_State_Variable_txt.pdf

Independently, the gm and C stages define the frequency response. This is seen when the value of IABC is adjusted. At 1mA the response is..

At a thousand times less current, the frequency response is a thousand times lower.

Assuming the OTAs and capacitors and buffers form perfect integrators, there are two different important feedbacks. The feedback from R2 has 90 degrees of phase shift while R3's feedback has 180 degrees of phase shift.

The ratio of 90 degree to 180 degree phase shift feed back obviously sets the stability of the filter. Think of the value of $R 2$ as setting the Q of the filter. The following web site shows that in more detail.
http://www.idea2ic.com/PlayWithSpice/pdf/State_Variable_s_eq_1_txt.pdf

Whenever the integrators of the filter change, the frequency response scales by the same amount.
http://www.idea2ic.com/PlayWithSpice/pdf/State_Variable_f_1KHz_txt.pdf

For filters using OTAs, this corresponds to gm an C terms. The above curves show IABC going from 1 mA to zero. More information is given below.
http: //www.idea2ic.com/PlayWithSpice/pdf/State_Variable_OTA_1KHz_txt.pdf

All state variable filters three outputs. The high pass not shown is just the input signal minus the lowpass.

This filter is using 800pF capacitors. Running at luA, the filter is center at a few hundred hertz. A BiCMOS process can easily run down at the $1 n A$ level. And the buffers can use CMOS inputs that have an input impedance of glass. That means the same filter could be built using capacitors 1000 times smaller. That means audio frequency filters can be put completely on chip.

