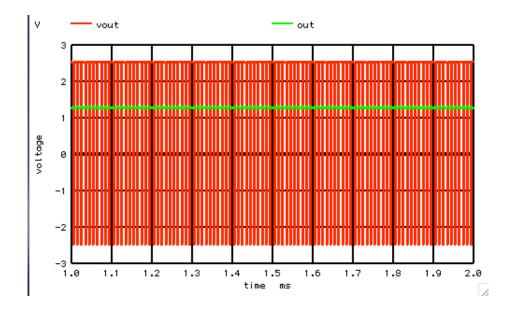
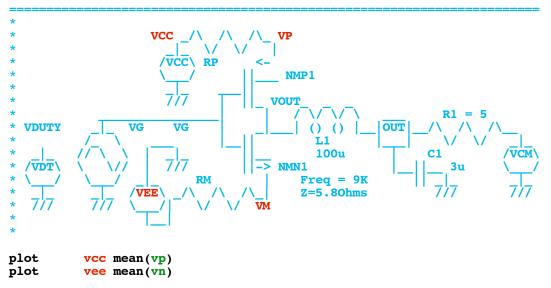
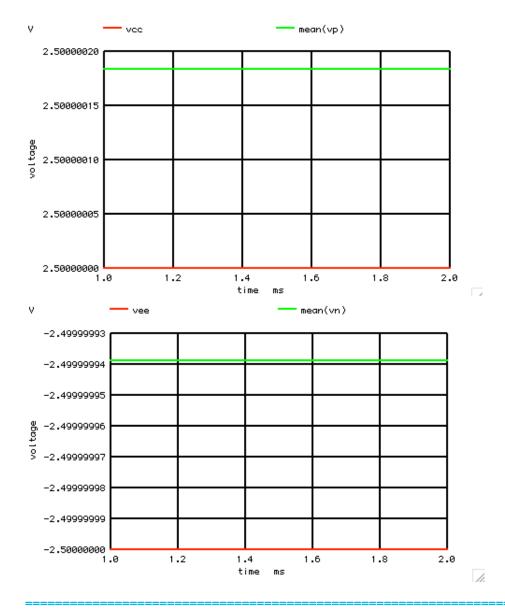
*======Class D Dual Supplies======

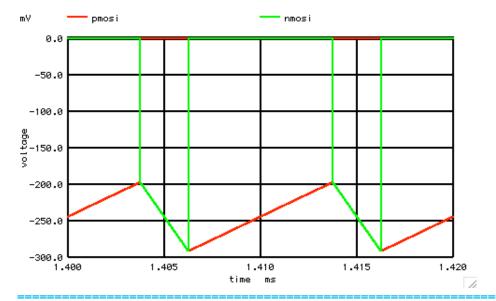

Class D output stages do some unusual thing when operating off of split supplies. Power should all obey the laws of thermal dynamics. Everything should make sense.

In this case there are two supplies, Vcc and Vee, which are supplying +/-2.5V. There is also an external common mode power source VCM to do experiments.


```
ClassD DC DualSupply
                       VCC\ RP
                                        NMP1
                                      VOUT
                                                                R1 = 5
  VDUTY
                  VG
                        VG
                                                       OUT
                                               ()
                                             L1
                                             100u
                                                             C1
                                       NMN1
   VDT
                                                                 3u
                           RM
                                          Freq = 9K
                                           Z=5.80hms
                           METHOD=trap
                                           ABSTOL=1u
                                                                     srcsteps = 1 gminsteps = 1
*.OPTIONS
            GMIN=1f
                                                          TEMP=27
*.OPTIONS
            RELTOL=.001
                           ABSTOL=1n
                                           VNTOL=1u
                                                          ITL4=500
                                                                     ITL1=400
           Create Signal=
VT
           VT
                  0
                          DC
                                          PWL (
                                                 0
                                                              1
                                                                      1)
                          DC
                                  100k
Vfreq
           Vfreq
                  0
VD
           VD
                  0
                          DC
                                  .75
                                  3.141592653589793
VPI
           VPI
                  0
                          DC
                                  acos( cos(6.283185*V(VFreq)*V(VT)) )/v(VPI)
B_TRI
           TRI
                  O
                          v =
BVG
           VG
                  0
                          v =
                                  5*u(v(TRI)-v(VD))-2.5
VCC
           VCC
                  0
                          DC
                                  2.5
VEE
           VEE
                  0
                          DC
                                  -2.5
           VCC
                  VP
                          1u
RPP
RN
           VN
                  VEE
                          1u
MN1
           VOUT
                  VG
                          VN
                                  VEE
                                         NMOSC
                                                  W=90000u
                                                               L=1u
           VOUT
                          VΡ
                                  VCC
                                         PMOSC
                                                  W=90000u
MP1
                  VG
                                                               L=1u
L1
           VOUT
                  OUT
                          100u
C1
           OUT
                          3u
                  0
                  VCM
                          5
Rout
           CUT
                          DC
Vrout
           Vrout.
                  0
                                  5
VCM
           VCM
                  0
                          2.5
           The CMOS Model Files
.model
           NMOSC
                                NMOS(Level= 1 Cbs=2f Cbd=2f)
.model
           PMOSC
                                PMOS(Level= 1
                                                Cbs=2f Cbd=2f)
.control
                  TSTOP
                          TSTART TMAX
                                         ?UIC?
*TRAN
           TSTEP
           .01u
                           1m
                                    .01u
tran
                   2m
linearize
           pensize = 2
set
plot
           vout out
```


To start off, the output duty cycle has been set to 75%, and VCM has been set to +2.5V. One would expect there to be +1.25V at the output, and 250mA should flow across RL.

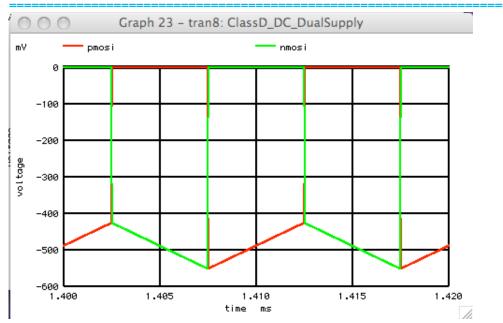
But when one looks at the polarity of current at VP and VN, one sees that VP is above 2.5V and VN is below VEE.



The currents flowing in VCC and VEE can be found and plotted to show that there is a 75% multiplexing of the 250mA of current flowing in RL. And for VCC, the current coming out is negative polarity. In other words the current is actually going in. In the case of VCC being a battery, VCC is getting charged up.

The current is also flowing into VEE. But since this is the negative node of VEE, VEE is being discharged.

A little math processing comes in handy to show what all is going on.

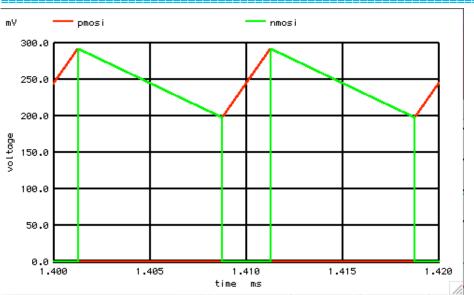

```
let
          pmospwr= pmosi*(vcc-vout)
let
          nmospwr= nmosi*(vout-vee)
let
          pmospwrdc=mean(pmospwr)
let.
          nmospwrdc=mean(nmospwr)
          "pmospwrdc =$&pmospwrdc nmospwrdc =$&nmospwrdc"
echo
let
          outdc=mean(out)
let
          vcmdc = vcm[0]
          routdc =mean(vrout[0])
let
let
          routidc = mean(rout_i)
let
          pmosidc = mean(pmosi)
let
          nmosidc = mean(nmosi)
                     mean((pmosi)*vcc[0])
let
          vccpwr=
                     mean((nmosi)*vee[0])
let
          veepwr=
                     -1*routidc*vcm[0]
let
          vcmpwr=
let
          routpwr
                     = routidc*routidc*routdc
let
          pwrsupply = vccpwr +veepwr
let
                    = routpwr/pwrsupply
echo
          "pwrsupply =$&pwrsupply"
          "outdc = $&outdc rload = $&routdc routidc = $&routidc pmosidc = $&pmosidc nmosidc
echo
=$&nmosidc
          "vccpwr =$&vccpwr vcmpwr =$&vcmpwr veepwr =$&veepwr routpwr =$&routpwr vcmdc
echo
=$&vcmdc
.endc
.end
```

For the case of VCM = +2.5V and 75% duty cycle.

```
Circuit: ClassD_DC_DualSupply
pmospwrdc =0.00441995 nmospwrdc =-0.00229973
pwrsupply =-0.305597
outdc =1.27714
                  rload =5 routidc =-0.244572 pmosidc =-0.183406 nmosidc =-0.0611667
vccpwr =-0.458514 vcmpwr =0.611431 veepwr =0.152917 routpwr =0.299078 vcmdc =2.5
                         <- 0.183406 A
                             /\ /\_
                        _/\
                    VCC
                                                 pwrsupply =-0.305597 W
                           \/
                     /VCC\ RP
                                  <-
      -0.458514 W
                                                                0.299078 W
                                          75% duty
                                                             <- 0.244572 A
   25%
                                    VOUT
                                                  1.27714 V
                                                            R1 = 5
                                                                       2.5v
  VDUTY
                VG
                       VG
                                                    OUT
                                          ()
                                             ()
                                           100u
                                                          C1
                                                                     /VCM\
  /VDT\
                                   -> MN1
                          RM
                                        Freq = 9K
                 /VEE\
                                         z=5.80hms
                              \/
                                  VM
                                                                      +2.5 V
                          0.0611667 A
                                                                       0.611431 W
       0.152917
```

It looks like node OUT is around 1.25V and for a current in of around 250mA. In other words the V to I relationship at the OUT node is that of a 5 Ohm resistor.

Power supply VEE is supplying around 625mW of power, half of which is dissipated by RL. So node OUt is receiving the other half of that power. It looks like VEE is getting charge up and Vee is getting discharge. But it look likes there is a net charging for the two supplies which equal the power that node OUT is absorbing.


For the case of VCM = +2.5V and 50% duty cycle. Now VCM is supplying about 1.25W of power and RL is receiving it all.

Now about 500mA is flowing into output node OUT. But since it is at zero volts, it is absorbing little power.

Now Vee is still getting discharged and Vcc charges, but both at a equal and opposite value. So there is no net charge to the two supplies, but there is a high efficiency transfer of power between the two supplies.

```
pmospwrdc =0.0120588 nmospwrdc =-0.0146741
pwrsupply =0.000524389
outdc =0.0543487 rload =5 routidc =-0.48913 pmosidc =-0.24446 nmosidc =-0.24467
vccpwr =-0.611151 vcmpwr =1.22283 veepwr =0.611675 routpwr =1.19624 vcmdc =2.5
                         <- 0.24446 A
                    VCC
                                                 pwrsupply = 0.000524389 W
                                 ___ VP
                           ۱/
                     /VCC\ RP
                                   <-
     -0.611151 W
                                                                          W
                                       MP1
                                                                 1.19624
                                          50% duty
                                                              <- 0.48913 A
                                     VOUT
   50%
                                                   .0543487 V
                                                             R1 = 5
                                                                        2.5v
  VDUTY
                 VG
                       VG
                                                     OUT
                                                               /\
                                           ()
                                             ()
                                           L1
                                                           C1
                                                                      /VCM\
                                           100u
  /<u>vòt</u>/
                                      MN1
                                                              3u
                                         Freq = 9K
                 VEE
                                         Z=5.80hms
                                   VМ
                                                                       +2.5 V
```

1.22283 W

0.24467 A

0.611675 W

For the case of VCM = -2.5V and 25% duty cycle. Now VCM is supplying about 625W of power and RL is receiving half. Now about 250mA is flowing out of output node OUT. The output Node OUT is again acting like a resistor in terms of voltage, current and power, and the net power is being transferred to the supplies. But in this case Vcc is getting discharged.

pmospwrdc =0.00229985 nmospwrdc =-0.00442002
pwrsupply =-0.30559

outdc =-1.27712 rload =5 routidc =0.244576 pmosidc =0.0611701 nmosidc =0.183406 vccpwr =0.152925 vcmpwr =0.61144 veepwr =-0.458515 routpwr =0.299087 vcmdc =-2.5

```
> 0.0611701 A
                                                   pwrsupply = -0.30559 W
                    /VCC\ RP
    0.152925 W
                                       MP1
                                                                   0.299087 W
                                           25% duty
                                                                -> 0.244576 A
                                     VOUT
 75%
                                                     -1.27712 V
                                                                R1 = 5
VDUTY
                VG
                      VG
                                                      OUT
                                           ()
                                               ()
                                            L1
                                            100u
                                                             C1
                                                                         /VĊM\
/<u>vď</u>t/
                                      MN1
                                   _>
                                                                 3u
                          RM
                                          Freq = 9K
                                          z=5.80hms
                 VEE\
                                   VM
                                                                          -2.5 V
                              \/
                           0.183406 A
                                                                          0.61144 W
    -0.458515
```

So it looks like it is possible to build a 5 ohm Energy Harvesting Resistor.

```
======Full_Netlist_For_Copy_Paste==============
ClassD DC DualSupply
                     /VCC\ RP
                                      MP1
                                    VOUT
                                                            R1 = 5K
  VDUTY
                       VG
                                                   OUT
                                         ()
                                            ()
                                          100u
                                                          C1
   VDT\
                                     MN1
                                                             3u
                          RM
                                        Freq = 9K
                 VEE
                                        Z=5.80hms
                                  VM
                                        ABSTOL=1u
           GMIN=1f
*.OPTIONS
                         METHOD=trap
                                                       TEMP=27
                                                                 srcsteps = 1 gminsteps = 1
           RELTOL=.001
                         ABSTOL=1n
                                        VNTOL=1u
                                                       ITL4=500
                                                                 ITL1=400
*.OPTIONS
        ==Create_Signal========
                 0
                                              0
VT
          VT
                        DC
                                       PWL (
                                                           1
                                                                  1)
          Vfreq
Vfreq
                 0
                        DC
                                100k
VD
          VD
                 0
                        DC
                                .75
                 0
                                3.141592653589793
VPI
          VPI
                        DC
B TRI
          TRI
                 0
                        v =
                                acos( cos(6.283185*V(VFreq)*V(VT)))/v(VPI)
BVG
          VG
                 0
                        v =
                                5*u(v(TRI)-v(VD))-2.5
VCC
          VCC
                 0
                        DC
                                2.5
                        DC
VEE
          VEE
                 0
                                -2.5
RPP
          VCC
                 VP
                        1u
                 VEE
RN
          VN
                        1u
MN1
          VOUT
                 VG
                        VN
                                VEE
                                       NMOSC
                                               W=90000u
                                                            L=1u
MP1
          VOUT
                 VG
                                VCC
                                       PMOSC
                                               W=90000u
                        VP
                                                            L=1u
L1
          VOUT
                 OUT
                         100u
C1
          OUT
                 0
                        3u
                 VCM
Rout
          OUT
                        5
Vrout
          Vrout
                 0
                        DC
                                5
VCM
          VCM
                 0
                         2.5
          The CMOS Model Files=
.model
          NMOSC
                              NMOS(Level= 1
                                             Cbs=2f Cbd=2f)
          PMOSC
.model
                              PMOS(Level= 1 Cbs=2f Cbd=2f)
```

.control

```
*TRAN
          TSTEP TSTOP TSTART TMAX
                                      ?UIC?
          .01u
tran
                 2m
                        1m .01u
linearize
         pensize = 2
set
          vout out
plot
plot
         vcc mean(vp)
plot
         vee mean(vn)
let
         pmosi = (vcc-vp)*1000k
         nmosi = (vee-vn)*1000k
rout_i = (out-vcm)/vrout[0]
let
let
         pmosī nmosi xlimit 1.4m 1.42m
plot
let
         pmospwr= pmosi*(vcc-vout)
let
         nmospwr= nmosi*(vout-vee)
let
         pmospwrdc=mean(pmospwr)
let
         nmospwrdc=mean(nmospwr)
echo
         "pmospwrdc =$&pmospwrdc nmospwrdc =$&nmospwrdc"
         outdc = mean(out)
let.
         vcmdc = vcm[0]
let
let
         routdc =mean(vrout[0])
        routidc = mean(rout i)
let
        pmosidc = mean(pmos\overline{i})
let
let
         nmosidc = mean(nmosi)
         vccpwr= mean((pmosi)*vcc[0])
let
         veepwr= mean((nmosi)*vee[0])
let
let
         vcmpwr= -1*routidc*vcm[0]
let
         routpwr = routidc*routidc*routdc
let
          pwrsupply = vccpwr +veepwr
                   = routpwr/pwrsupply
let
          pwrEff
echo
          "pwrsupply =$&pwrsupply
echo
          "outdc = $&outdc rload = $&routdc routidc = $&routidc pmosidc = $&pmosidc nmosidc =
$&nmosidc
          "vccpwr =$&vccpwr vcmpwr =$&vcmpwr veepwr =$&veepwr routpwr =$&routpwr vcmdc =
echo
$&vcmdc
           pmosi nmosi pmosidc nmosidc xlimit 1m 1.004m
*plot
                       xlimit 1m 1.004m
*plot
           vout out
*plot
           pmospwr nmospwr pmospwrdc nmospwrdc xlimit 1m 1.004m ylimit -20m 20m
.endc
.end
9.16.10 1.59PM
dsauersanjose@aol.com
Don Sauer
```