MAPPING_PHASE NOISE

1) Oscillator phase noise is an accumlation of period timing tolerance error.
2) A +/- .1 _pk radian Phase Modulation maps to two -26dB sidebands
3) A +/- .1_rms radian Phase Modulation maps to two -23dB sidebands
4) Flat Randomness Phase Modulation is spread out over all FFT frequency bins.

Flat_Expect_perl00Hz = .1*.5*sqrt(2)/sqrt(5000) = 1m

5) Limited accumulated phase rms approaches SD*sqrt(Num_periods)/sqrt(2*4)
V1_Expect_rms_10ms = 0.1*0.707*sqrt (10000)/2 = 3.5

6) Apply Limited accumulated phase Modulation to the Carrier
Vpm = cos(2*PI*100k*V(VTime)+ V (V1))

7) Define Fratio = Freq_Carrier_Hz/mag(Frequency_Hz-Freq Carrier_ Hz)
Fratio define the level of the accumulation process
Fratio = 100k/mag (frequency-100k)

8) When Fratio =1 two periods of carrier should have sqrt(2) the normal noise

9) Expected_spectrum = Noiseflat*fratio*sqrt(2)

10) Plot Real_spectrum Expected_spectrum Flat_Expected vs Fratio

" wl Units magy{wpm — wexpect

1a.a 8

I
4
12

vol tage
=]
|>
o

-1@.8
v 1876

~15.@ 187 -
5.8 2.8 4.8 5.8 2.8 18.8 1o 1873 8% 1875 18
time ms frequency Hz
The accumulated randomness for 0.1 _rms radians added up to around 3.5_rms over 10k samples
at lus each. The spectrum of Phase Modulation using the accumulated randomness shows the

expected curve. It is possible to predict this curve.

ant_10000_lus_steps

Total_ Period s = 0.01
Bin_ Resolutio Hz = 100
Sample_Period_s = 1E-06
Nyquist_Hz 500000

5000
Create_PWL_array_and_Index_ and Plot==============
Add_.1lVrms_Noise_to_PWL_array

Adjust_Endpoint:
ind_Ave Rms_V1

Total_Bins

RMS_level_Expect 0.1%0.707*sqrt (10000) /2
RMS_level Expect 3.535
RMS_level RM

3.22762

Install_the_PWL_ array

FT_and_Plot_VP

FFT_BandWidth_Hz= 1E+06
FFT_resolution_Hz= 100
Flat_Noise .1%,5*%sqrt (2)/sqrt (5000)
Flat_Noise_Expect 0.001
fratio 100k /mag (frequency-100k)
vexpect Noiseflat*fratio*sqrt(2)
don
Units magy vpm Moiseflat
wexKpect
18
1 ,--
|~
.1 =
' —
‘h““‘
@.01
18°-3 =
187-4
18°-5 |
187-6
187
@.1 1 18 188 1873

The definition of Fratio (which can be thought of as an accumulation factor) is this.

Fratio

fratio =

= Freq_Carrier Hz/mag(Frequency_ Hz-Freq_Carrier_ Hz)

When the real spectrum is plotted versus Fratio, a very linear relationship is present.
When Fratio is at one, think of the noise as consisting of two time periods.

And each time period has the normal (flatband) tolerance. Now the noise is being integrated,
so a Fratio of 10 should have 10 times that value, and so on. In this case the noise is
really limited accumulated randomness. So at some level of Fration the noise flattens out.

Note that the accumulation process is integrating the noise floor such that a factor of 10
increase in time results in an factor of 10 increase in noise floor. But the bandwidth
of this noise floor is 10 time less. So the full RMS of accumulated noise over a factor
of 10 mover time should be..
Increase_In_Gain/Decrease_In_Bandwidth = 10/sqrt(10) = sqrt(10)

Limited Accumlation noise for N samples appears to follow this equation.

LimitAcc_Noise_rms = RMS*0.707*sqrt(N)/2
MacSpiceCode

MAPPING_PHASE NOISE
*=========Create_Signal==================
VTime VTime 0 DC 0 PWL (0 0 1 1)
Vireql Vireql 0 DC 2
vl V1 0 DC 0
BMOD VMOD 0 v = cos(6.2831853*2000*V(VTime))
BPM VPM 0 v = 1*cos(6.2831853*100k*V(VTime)+1*V (V1))
BCOS vcos 0 v = 1*cos(6.2831853*100k*V(VTime))
.control
*TRAN TSTEP TSTOP TSTART TMAX ?UIC?
echo " ant_10000_1lus_step: "
let n = 10000
let tstep = lus
let period t = n*tstep
let Bin_Hz = 1/period_t
let nyquist = .5/tstep
let binsTotal= nyquist/Bin Hz
echo "Total_Period_s = $&period_t"
echo "Bin_Resolutio Hz = $&Bin_Hz"
echo "Sample Period s = S&tstep”
echo "Nyquist_Hz = $&nyquist"”
echo "Total_ Bins = $&binsTotal"
echo " Create_PWL_array_and_Index_and_Plot=============="
let pwl 1 = vector(2*n)*tstep*0.5
let ii = vector (2*$&n)
echo " dd_.1Vrms_Noise_ to_PWL_array "
let n2 = n-1
let pwl_1[0] =0
let index = 1
repeat $&n2
let vnoise = .1414*(rnd(127)+rnd(127)+rnd(127)+rnd(127)+rnd(127)+rnd(127)+rnd(127)+rnd(127)-507.5)/102.879
let pwl_1[1+2*index] = pwl 1[-1+2*index] + vnoise
let index = index + 1
end
echo " djust_Endpoint "
let endpt = pwl_1[19999]
let index = 1
repeat $&n2
let pwl 1[1+2*index] = pwl 1[1+2*index] -l*endpt*index/10000
let index = index + 1
end
let endpt = pwl_1[1999]
echo " Find_Ave Rms_V1 "
let avervVal = mean(pwl_1)
let noisAC = pwl_1 - averVal
let RmsvVal = l*sqgrt(mean(noisAC* noisAC))
let rms_exp = 0.1*%.707*sqrt(10000)/2
echo "RMS_level Expect 0.1%0.707*sqrt(10000)/2 "
echo "RMS_level Expect $&rms_exp "
echo "RMS_level RM $&Rmsval "
unlet averVal
unlet RmsVal
echo " Install_the_ PWL_array "
alter @vl[pwl] = pwl_1
tran .1lu 10m 0 .1lu
set pensize = 2
plot vl
echo " FT_and_Plot_VP "
linearize
let FFT_BandWidth Hz = lmeg
let FFT_resolution Hz = 100
echo "FFT_BandWidth_ Hz= $&FFT_BandWidth_Hz"
echo "FFT_resolution Hz= $&FFT_resolution_Hz"
set specwindow= "rectangular"
spec $&FFT_resolution_Hz $&FFT_BandWidth_Hz $&FFT_resolution_Hz v (vpm)
let Noiseflat = .1*%.5%sqrt(2)/sqrt(5000)
echo "Flat_Noise .1%*.5%sqrt(2)/sqrt(5000) "
echo "Flat_Noise_ Expect $&Noiseflat "
let fratio = 100k/mag (frequency-100k)
echo "fratio 100k/mag(frequency-100k)"
echo "vexpect Noiseflat*fratio*sqrt(2)"
let vexpect = Noiseflat*fratio*sqrt(2)
plot mag(vpm) Noiseflat vexpect vs fratio loglog

plot mag(vpm) vexpect loglog

echo dor

.endc
.end

4.4.11 12.12PM
dsauersanjose@aol.com
Don Sauer

