CTfile Formats

December 1999

MDL
Information Systems, Inc.

December 1999

© Copyright 1999 by MDL Information Systems, Inc. All rights reserved. No part of this document

may be reproduced by any means except as permitted in writing by MDL Information Systems, Inc.,
14600 Catalina Street, San Leandro, CA 94577.

MDL is a registered trademark of MDL Information Systems, Inc.

ISIS is a trademark of MDL Information Systems, Inc.

All other product names are trademarks or registered trademarks of their respective holders.
U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

This software is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subdivision (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause at FAR 252.227-7013. Contractor/Manufacturer is:

MDL Information Systems, Inc.
14600 Catalina Street
San Leandro, CA 94577

Table of Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Introduction
Change Logo 1-1
Standard CTfiles o 1-2

The Connection Table [CTAB]

The Counts Lineot 2-3
The Atom Block 2-4
The Bond Block 2-6
The Atom List Block 2-7
The Stext Block. 2-7
The Properties Block. 2-8
The Properties Block for 3D Features. 2-19
3D featurescountline. 2-21
3D features detail lines 2-21
3D data ConStraintso 2-31
Stereo NOTES o 2-33
Molfiles
The Header Block. o e 3-2
RGfiles
SDfiles
SDfile aftera CFSsearch 5-4
Rxnfiles
Header Block 6-1
Reactants/Productst 6-3

Molfile Blocks.o 6-3

Chapter 7

Chapter 8

Chapter 9

Chapter 10

CTfile Formats (December 1999)

RDfiles

RDfile Header. o 7-2
Molecule and Reaction Identifiers 7-2
Data-field Identifier. 7-3
Data. 7-3

Atom Limit Enhancements

Phantom Extra Atom 8-1
Superatom Attachment Point., 8-2
Superatom Class oot 8-3
Large REGNO 8-3
Sgroup Bracket Style. 8-3

Moving CTfiles On and Off the Clipboard in ISIS

Clipboard Objects 9-1
Hints on Creating a Reader/Writer ForCT 9-2
Copying from the Clipboard 9-2

Copyingtotheclipboard. 9-3
Sample Code For Copying or Pasting a CTfile in MS Windows 9-4

The Extended Molfile Format

Specifications For Atom and Bond Descriptions 10-3
CoNVENLIONS o 10-4
The Extended Connection Table 10-5
CTAB DIOCK . . . 10-5
Counts line. 10-5
Atom block. 10-6
Bond block. 10-9
Link atom line 10-11
Sgroup block 10-12
3D blocK . .. 10-20
The Extended Rgroup Query Molfile 10-23
Rgroup block 10-24
Rgroup logic lines. 10-26

Chapter 1

Introduction

Change Log

MDL Information Systems supports a number of file formats for representation
and communication of chemical information. This document describes the

formats for MDL’s CTfiles (chemical table files):

= Part | (Chapters 2 through 9) describes the standard CTfile formats.

< Part Il (Chapter 10) describes the extended molfile format. All extended
molfiles can be easily identified by the “V3000” version stamp in the header
portion of the file. You are most likely to encounter the extended molfile
format in CTfiles written from ISIS/Host or ISIS/Desktop version 2.0 or

higher.

The following are the changes in this document:

Change

December, 1999

Updated entries in “Atom List”
December, 1998

Updated “Example of an SDfile”
August, 1998

Added STBOX field

June, 1997

Added Atom Attachment Order

Added new ATTCHORD field

Page(s)

2-11

5-3

10-9

2-11
10-6, 10-8

11

CTfile Formats (December 1999)

Change
October, 1996

Minor corrections

Enhanced description of connection table properties block

Added Sgroup bracket style

Standard CTfiles

RGfile

molfile

SDfile

molfile

1-2

Page(s)

2-3,2-8
2-8

8-3, 10-14, 10-19,

The following figure illustrates the relationship between the various file
formats described below:

molfile

-

RDfile

molfile

[ctab]|

molfiles

RGfiles

rxnfile

molfile

RDfile

rxnfile

molfile

Molecule files: Each molfile describes a single
molecular structure which can contain disjoint

fragments.

Rgroup files: An RGfile describes a single molecular
query with Rgroups. Each RGfile is a combination of
Ctabs defining the root molecule and each member
of each Rgroup in the query.

Introduction

rxnfiles

SDfiles

RDfiles

Reaction files: Each rxnfile contains the structural
information for the reactants and products of a single
reaction. MDL currently has two types of rxnfiles: the
REACCS type and the CPSS-rxnfile written by CPSS
programs (CPSS-rxnfiles are not described in this
document.) CPSS programs cannot read a REACCS
rxnfile; however, REACCS can read and write
CPSS-rxnfiles for transfer to CPSS.

Structure-data files: An SDfile contains structures and
data for any number of molecules. Together with
RDfiles, SDfiles are the primary format for large-scale
data transfer between MDL databases.

Reaction-data files: Similar to SDfiles in concept, the
RDfile is a more general format that can include
reactions as well as molecules, together with their
associated data. Although RDfiles are used primarily
by ISIS and REACCS, MACCS-II can also read and
write RDfiles except for the reaction structure
information (indicated by the square brackets in
Table 1-1). CPSS reads and writes RDfiles with
embedded molfiles and CPSS-rxnfiles (indicated by
the curly brackets in Table 1-1).

Table 1-1 shows which CTfiles MDL programs can read and write.

Table 1-1 MDL Program

CTfile Type MACCS-II REACCS ISIS CPSS
molfiles + + + +
RGfiles + +

rxnfiles + + #}
SDfiles + + +
RDfiles [+] + + {+}

1-4

CTfile Formats (December 1999)

Some of the structural and query properties described in this document are
generic in their applicability, while others are peculiar to certain CTfile types
(see Table 1-2). The applicability of each property is identified in subsequent
chapters by the icons shown in Table 1-2.

Table 1-2 Properties and identifying icons applicable to various CTfile types

Icon Property molfile RGfile SDfile rxnfile RDfile
Generic + + + + +
Sgroup + + +

m Rgroup + + +

3D + + +

CPSS + + + +
Reaction + +

ﬂ Query + + +

PART |
Standard File Formats

Chapter 2

The Connection Table [CTAB]

A connection table (Ctab) contains information describing the structural
relationships and properties of a collection of atoms. The atoms may be
wholly or partially connected by bonds. Such collections may, for example,
describe molecules, molecular fragments, substructures, substituent groups,
polymers, alloys, formulations, mixtures, and unconnected atoms. The
connection table is fundamental to all of MDL's file formats.

Figure 2-1 shows the connection table of a simple molecule (alanine) with the
various data blocks identified. The connection table corresponds to the
following alanine molecule. The atom numbers on the structure correspond
to atom numbers in the Ctab. An atom number is assigned according to the
order of the atom in the Atom Block.

CTfile Formats (December 1999)

Figure 2-1 Connection table organization illustrated using alanine

13 CHIRAL
C
3
L-Alanine O-
12 6
N+
4
0]
5
6 500 10 3 V2000 ~] Counts line]
-0.6622 0.5342 0.0000C 0 0 2 0 0 O T
0.6220 -0.3000 0.0000C 0 0 0 0 O O
-0.7207 2.0817 0.0000C 1 0 0 O O O Atom block
-1.8622 -0.3695 0.0000N O 3 0 0 0 O
6220 -1.8037 0.00000 0 0 0 0 O O
1.9464 0.4244 0.00000 0 5 0 0 0 O] Connection
121 0 00 table (Ctab)
131100 Bond block
141000
252000 Atom list block
I 'om ISt DIOCI
26100 0 I?Iocl.(s not used
in this Ctab Stext block
M CHG 2 4 1 6 -1
M 1SO 1 3 13 Properties block
M END 1

The format for a Ctab block is:

= Counts line: Important specifications here relate to the number of atoms,
bonds, and atom lists, the chiral flag setting, and the Ctab version.

= Atom block: Specifies the atomic symbol and any mass difference, charge,
stereochemistry, and associated hydrogens for each atom.

= Bond block: Specifies the two atoms connected by the bond, the bond
type, and any bond stereochemistry and topology (chain or ring
properties) for each bond.

= Atom list block: Identifies the atom (number) of the list and the atoms in
the list.

2-2

The Connection Table [CTAB]

= Stext (structural text descriptor) block: Used by ISIS and CPSS programs.

= Properties block: Provides for future expandability of Ctab features, while
maintaining compatibility with earlier Ctab configurations.

The detailed format for each block outlined above follows:

Note: A blank numerical entry on any line should be read as “0” (zero).
Spaces are significant and correspond to one or more of the following:

= Absence of an entry
= Empty character positions within an entry

= Spaces between entries; single unless specifically noted otherwise

The Counts Line

aaabbbl 1 1 FFfcccsssxxxrrrpppi i immmvvvvvv

Where:
aaa = number of atoms (current max 255)*
bbb = number of bonds (current max 255)*
1] = number of atom lists (max 30)* ﬂ
fff = (obsolete)
cce = chiral flag: 0=not chiral, 1=chiral
SSS = number of stext entries
XXX = number of reaction components + 1
rer = number of reactants
ppp = number of products
iii = number of intermediates
mmm = number of lines of additional
properties, including the M END line.
No longer supported and default set to 999
VVWWWY = Ctab version: “<V2000” or V3000~

* These limits apply to MACCS-I11, REACCS, and the ISIS/Host Reaction
Gateway, but not to the 1SIS/Host Molecule Gateway or ISIS/Desktop.

For example, the counts line in the Ctab shown in Figure 2-1 shows six atoms,
five bonds, the CHIRAL flag on, and three lines in the properties block:

6 5 0 0 1 O 3 V2000

2-3

CTfile Formats (December 1999)

The Atom Block

The Atom Block is made up of atom lines, one line per atom with the
following format:;

XXXXX . XXXXYYYYY .YYYyyzzzzz .zzzz aaaddcccssshhhbbbvvvHHHrrrii immmnnneee

where the values are described in Table 2-1.

Table 2-1 Meaning of values in the atom block

Field Meaning

Values

X y z atom coordinates

aaa atom symbol

dd mass difference
ccc charge

sss atom stereo parity

hhh hydrogen count + 1

bbb stereo care box

2-4

entry in periodic table or L for atom list,
A, Q, * for unspecified atom, and LP for
lone pair, or R# for Rgroup label

-3,-2,-1,0,1,2,3,4
(0 if value beyond these limits)

0 = uncharged or value other than
these, 1 =+3,2=+2,3 =+1,
4 =doublet (),5=-1,6=-2,7=-3

0 = not stereo, 1 = odd, 2 = even,
3 = either or unmarked stereo center

1=H0,2=H1,3=H2,4=H3,
5=H4

0 = ignore stereo configuration of this
double bond atom, 1 = stereo
configuration of double bond atom
must match

w =
HERBR B 2
g

D

(2]

ifference from mass in
periodic table. Wider range of
values allowed by M 1SO0 line,
below. Retained for
compatibility with older Ctabs,
M IS0 takes precedence.

Wider range of values in
M CHG and M RAD lines
below. Retained for
compatibility with older Ctabs,
M CHG and M RAD lines take
precedence.

Ignored when read. See
stereo notes on page 2-33.

ﬂ HO means no H atoms
allowed unless explicitly drawn.
Hn means atom must have nor
more H’s in excess of explicit
H’s.

ﬂ Double bond
stereochemistry is considered
during SSS only if both ends of
the bond are marked with stereo
care boxes.

The Connection Table [CTAB]

Table 2-1 Meaning of values in the atom block (Continued)
Field Meaning Values Notes
A% valence 0 = no marking (default) Shows number of bonds
(1to 14) = (1 to 14) 15 = zero valence to this atom, including bonds to
implied H’s.
HHH HO designator 0 = not specified, 1 = no H atoms Redundant with hydrogen
allowed count information. May be
unsupported in future releases
of MDL software.
rer reaction component type reactant = 1, product = 2, intermediate
=3
iii reaction component number 0 to (n-1)
mmm atom-atom mapping number 1 - number of atoms
nnn inversion/retention flag 0 = property not applied
1 = configuration is inverted,
2 = configuration is retained,
eee exact change flag 0 = property not applied, ﬂ
1 = change on atom must be exactly as
shown

Note: With Ctab version V2000, the dd and ccc fields have been superseded
by the M ISO, M CHG, and M RAD lines in the properties block, described
below. For compatibility, all releases since MACCS-II 2.0, REACCS 8.1, and
ISIS 1.0:

= Write appropriate values in both places if the values are in the old range.

« Use the atom block fields if there are no M ISO, M CHG, or M RAD lines in
the properties block.

Support for these atom block fields may be removed in future releases of
MDL software.

2-5

CTfile Formats (December 1999)

The Bond Block

The Bond Block is made up of bond lines, one line per bond, with the
following format:

111222 tttSSSXXXrrrccc

where the values are described in Table 2-2.

Table 2-2 Meaning of values in the bond block

Field Meaning Values Notes

111 first atom number 1 - number of atoms

222 second atom number 1 - number of atoms

ttt bond type 1=Single, 2 = Double, ﬂ Values 4 through 8 are
3 =Triple, 4 = Aromatic, for SSS queries only.
5 = Single or Double,
6 = Single or Aromatic,
7 = Double or Aromatic, 8 = Any

sss bond stereo Single bonds: 0 = not stereo, The wedge (pointed)
1=Up, 4 = Either, end of the stereo bond is at
6 = Down, Double bonds: 0 = Use x-, y-, z-coords the first atom (Field 111
from atom block to determine cis or trans, above)
3 =Cis or trans (either) double bond

XXX not used

rrr bond topology 0 = Either, 1 = Ring, 2 = Chain ﬂ SSS queries only.

ccc reacting center status 0 = unmarked, 1 = a center, (query only)

-1 = not a center,

Additional: 2 = no change,

4 = bond made/broken,

8 = bond order changes

12 = 4+8 (both made/broken and changes);
5=(4+1),9=(8+1),and 13 = (12 +1)
are also possible

2-6

The Connection Table [CTAB]

The Atom List Block |}

Note: Newer programs use the M ALS item in the properties block in place of
the atom list block. The atom list block is retained for compatibility, but
information in an M ALS item supersedes atom list block information.

Made up of atom list lines, one line per list, with the following format:

aaa kSSSSn 111 222 333 444 555

where:

aaa = number of atom (L) where list is attached
k =T = [NOT] list, F = normal list

n = number of entries in list; maximum is 5
111...555 = atomic number of each atom on the list
S = space

The Stext Block[Ed

The Stext Block is made up of two-line entries with the following format:

XXXXX - XXXXYYYYY -YYYY

TTTT. ..
where:
Xy = stext coordinate
T = stext text

2-7

CTfile Formats (December 1999)

The Properties Block

2-8

The Properties Block is made up of mmm lines of additional properties, where
mmm is the number in the counts line described above. If a version stamp is
present, mmm is ignored and the file is read until an M END line is encountered.
Currently mmm is no longer supported and set to 999 as the default.

Most lines in the properties block are identified by a prefix of the form M Xxx
where two spaces separate the M and XxX. Exceptions are:

e A aaa, V aaa vvvvvy, and G aaappp, which indicate ISIS and CPSS
properties: atom alias, atom value, and group abbreviation (called residue
in 1S1S), respectively.

= S skpnnn which causes the next nnn lines to be ignored.
The prefix: M END terminates the properties block.

Variables in the formats can change properties but keep the same letter
designation. For example, on the Charge, Radical, or Isotope lines, the
“uniformity” of the vvv designates a general property identifier. On Sgroup
property lines, the sss uniformity is used as an Sgroup index identifier.

All lines that are not understood by the program are ignored.

The descriptions below use the following conventions for values in field
widths of 3:

ni5 number of entries on line; value = 1 to 15
nn8 number of entries on line; value = 1 to 8

nné number of entries on line; value = 1 to 6

nn4 number of entries on line; value = 1 to 4

nn2 number of entries on line; value = 1 or 2

nnl number of entries on line; value = 1

aaa atom number; value = (1 to number of atoms)

The format for the properties included in this block follows. The format
shows one entry; ellipses (. . .) indicate additional entries.

Atom Alias

A aaa

X..-

aaa: Atom number
X. .. Alias text

The Connection Table [CTAB]

Atom Value

V aaa v...
aaa:

V...

Group Abbreviation

G aaappp
X. .-

aaa:

ppp:

Charge

M CHGnn8 aaa vvv ...

VVVI

Atom number

Value text

Atom number
Atom number
Abbreviation label.

Abbreviation is required for compatibility with CPSS.
CPSS allowed abbreviations with only one
attachment. The attachment is denoted by two atom
numbers, aaa and ppp. All of the atoms on the aaa
side of the bond formed by aaa-ppp are abbreviated.
The coordinates of the abbreviation are the
coordinates of aaa. The text of the abbreviation is on
the following line (x...). In current versions of ISIS,
abbreviations can have any number of attachments
and are written out using the Sgroup appendixes.
However, any ISIS abbreviations that do have one
attachment are also written out in the CPSS-style,
again for compatibility with CPSS, but this behavior
might not be supported in future versions.

-15 to +15. Default of 0 = uncharged atom. When
present, this property supersedes all charge and
radical values in the atom block, forcing a 0 charge
on all atoms not listed inan M CHG or M RAD line.

2-9

2-10

CTfile Formats (December 1999)

Radical

M RADnn8 aaa vvv ...

VVVI

Isotope

M 1SOnn8 aaa vvv ...

VVVI

Ring Bond Count

M RBDnn8 aaa vvv ...

VVVI

Substitution Count [

M SUBnn8 aaa vvv ...

VVVI

Unsaturated Atom [EJ

M UNSnn8 aaa vvv ...

VVVI

Default of 0 = no radical, 1 = singlet (), 2 = doublet
), 3 = triplet (").When present, this property
supersedes all charge and radical values in the atom
block, forcing a 0 (zero) charge and radical on all
atoms not listed in an M CHG or M RAD line.

Absolute mass differing from natural abundance (as
specified by PTABLE.DAT) within the range -18 to
+12. When present, this property supersedes all
isotope values in the atom block. Default (no entry)
is natural abundance.

Number of ring bonds allowed: default of 0 = off, -1
= no ring bonds (r0),-2 = as drawn (r*); 2 = (r2), 3 =
(r3), 4 or more = (r4).

Number of substitutions allowed: default of 0 = off,
-1 = no substitution (s0),-2 = as drawn (s*); 1, 2, 3, 4,
5 = (s1) through (s5), 6 or more = (s6).

At least one multiple bond: default of 0 = off, 1 = on.

The Connection Table [CTAB]

Link Atom &1

M LINnn4 aaa vvv bbb ccc ...

vwv, bbb, ccc: Link atom (aaa) and its substituents, other than bbb
and ccc, may be repeated 1 to vvv times, (vvv > =
2).

Atom List [l

M ALS aaannn e 11112222333344445555. ..

aaa: Atom number, value = (1 to #atoms).

nnn: Number of entries on line (16 maximum).

e: Exclusion, value is T if a 'NOT’ list, F if a normal list.
1111...: Atom symbol of list entry in field of width 4.

Note: This line contains the atom symbol rather than
the atom number used in the atom list block. Any
data found in this item supersedes data from the
atom list block. The number of entries can exceed
the fixed limit of *5* in the atom list block entry.

Attachment Point [

M APOnn2 aaa vvv ...

VWV Indicates whether atom aaa of the Rgroup member
is the first attachment point (vvv = 1), second
attachment point (vvv = 2), both attachment points
(vvv = 3); default of 0 = no attachment.

Atom Attachment Order [§9

M AAL aaann2 111 vlv 222 v2v ...

aaa: Atom index of the Rgroup usage atom

nn2: Number of pairs of entries that follow on the line
111: Atom index of a neighbor of aaa

viv: Attachment order for the aaa-111 bond

222: Atom index of a neighbor of aaa

v2v: Attachment order for the aaa-222 bond

Note: viv and v2v are either 1 or 2 for the simple

2-11

2-12

CTfile Formats (December 1999)

doubly attached Rgroup member.

This appendix provides explicit attachment list order
information for R# atoms. The appendix contains
atom neighbor index and atom neighbor value pairs.
The atom neighbor value information identifies the
atom neighbor index as the ith attachment. The
implied ordering in V2000 molfiles is by atom index
order for the neighbors of Rgroup usage atoms. If
atom index order conflicts with the desired neighbor
ordering at the R# atom, this appendix allows you to
override to this default order.

If vlv=1 and v2v=2, I1SIS/Host only writes this
appendix if 111 is greater than 222. Note, however,
that the attachment values can be written in any
order.

Rgroup Label Location

M RGPnn8 aaa rrr ...

rer: Rgroup number, value from 1 to 32, labels position
of Rgroup on root.

Rgroup Logic, Unsatisfied Sites, Range of Occurrence [

M LOGnnl rrr iii hhh ooo

rer: Rgroup number, value from 1 to 32.

iii: Number of another Rgroup which must only be
satisfied if rrr is satisfied (IF rrr THEN iii).

hhh: RestH property of Rgroup rrr; default is 0 = off, 1 =
on. If this property is applied (on), sites labeled with
Rgroup rrr may only be substituted with a member
of the Rgroup or with H.

000: Range of Rgroup occurrence required: n = exactly n,
n - m = n through m,> n = greater than n, <n =
fewer than n, default (blank) is > 0. Any
non-contradictory combination of the preceding
values is also allowed; for example: 1, 3-7, 9, >11.

The Connection Table [CTAB]

Sgroup Type

M STYnn8 sss ttt ...

SSS:
tet:
Sgroup Subtype

M SSTnn8 sss ttt ...

ttt:

Sgroup number.

SUP = superatom, MUL = multiple group, SRU = SRU
type, MON = monomer, MER = Mer type, COP =
copolymer, CRO = crosslink, MOD = modification,
GRA = graft, COM = component, MIX = mixture,
FOR = formulation, DAT = data Sgroup, ANY = any
polymer, GEN = generic.

Note: For a given Sgroup, an STY line giving its type
must appear before any other line that supplies
information about it. For a data Sgroup, an SDT line
must describe the data field before the SCD and SED
lines that contain the data (see Data Sgroup Data
below). When a data Sgroup is linked to another
Sgroup, the Sgroup must already have been defined.

Sgroups can be in any order on the Sgroup Type
line. Brackets are drawn around Sgroups with the
M SDI lines defining the coordinates.

Polymer Sgroup subtypes: ALT = alternating, RAN =
random, BLO = block.

2-13

CTfile Formats (December 1999)

Figure 2-2 Ctab organization of an Sgroup structure

Polymer
ran
GSMACCS-1110179110412D 1 0.00374 0.00000 0 Header block (see Chapter 3)
7 6 0 0 0O 16 V2000 g Counts line
2.9463 0.3489 0.0000* 0 0 O 0 O O
1.6126 1.1189 0.0000C O 0 O 0O O O
0.2789 0.3489 0.0000C O 0 3 0 0 O Atom block
0.2789 -1.1911 0.0000CI 0 0 0 0 O O
-1.0548 1.1190 0.0000C O 0 O 0 O O
-2.3885 0.3490 0.0000C O 0 O 0 O O]
-3.9246 1.1470 0.0000* 0 0 O 0 O O]
121 00 0
2 310 0 0 Number of entries on line
3 4 1 0 0 O Bond block
5 6 1 0 0 O
5 3 1 0 00 Ctab
7 6 1. .80 0 | [Atom list block block
M osTY [3] 1 smu 3 cop 0e | General | {Sf‘m block
M SST [1| 3 RaN Subtype | soroup
M SLB 3| 1 5 2 & 3 7 Label | o
M SCN |2 1 HT 2 HT Connectivity i
M SAL 1 2 5 6
M SBL 1 2 5 6 Sgroup 1
M SDI 1 4 -0.6103 1.2969 -0.6103 0.1710 Sgroup
M SDI 1 4 -3.1565 0.1850 -3.1565 1.3110 = properties
M SAL 2 3 2 3 4
M SBL 2 2 1 5 Sgroup 2
M SDI 2 4 2.2794 1.2969 2.2794 0.1709
M SDI 2 4 -0.1657 0.1710 -0.1657 1.2969 =
M SAL 3 7 1 2 3 4 5 6 7 Sgroup 3
M SDI 3 4 3.6382 1.6391 3.6382 -1.7685 B
M SDI 3 4 -4.7070 -1.7685 -4.7070 1.6391 _ —
M END

2-14

The Connection Table [CTAB]

Sgroup Labels

M SLBnn8 sss vvv ...

VVVI

Sgroup Connectivity

M SCNnn8 sss ttt ...

ttt:

Sgroup Expansion

M SDS EXPnl5 sss ...

SSsS:

Sgroup Atom List g

M SAL sssnl5 aaa ...

aaa:

Sgroup Bond List

M SBL sssnl5 bbb ...

bbb:

Unique Sgroup identifier (for MACCS-II only, the
integer label is from 1-512).

HH = head-to-head, HT = head-to-tail, EU = either
unknown. Left justified.

Sgroup index of expanded superatoms.

Atoms in Sgroup sss.

Bonds in Sgroup sss. (For data Sgroups, bbb”s are
the containment bonds, for all other Sgroup types,
bbb’s are crossing bonds.)

Multiple Group Parent Atom List

M SPA sssnl5 aaa ...

aaa:

Atoms in paradigmatic repeating unit of multiple
group sss.

Note: To ensure that all current molfile readers
consistently interpret chemical structures, multiple
groups are written in their fully expanded state to
the molfile. The M SPA atom list is a subset of the full
atom list that is defined by the Sgroup Atom List

M SAL entry.

2-15

2-16

CTfile Formats (December 1999)

Sgroup Subscript B

M SMT sss m...

m...: Text of subscript Sgroup sss. (For multiple groups,
m. .. is the text representation of the multiple group

multiplier. For superatoms, m. . . is the text of the
superatom label.

Sgroup Correspondence
M CRS sssnn6 bbl bb2 bb3

bbl, bb2: Crossing bonds that share a common bracket.
bb3: Crossing bond in repeating unit that connect to bond
bb1.

Sgroup Display Information

M SDI sssnn4 x1 yl x2 y2

x1,yl,x2,y2: Coordinates of bracket endpoints (FORTRAN format
4F10.4).

Superatom Bond and Vector Information

M SBV sss bbl x1 yl
bb1: Bond connecting to contracted superatom.

x1,yl: Vector for bond bb1 connecting to contracted
superatom sss (FORTRAN format 2F10.4).

Data Sgroup Field Description

sss: Index of data Sgroup.

.. _Fff: 30 character field name (in MACCS-1I no blanks,
commas, or hyphens).

0g: Field type (in MACCS-II F = formatted, N = numeric,
T = text).

hhh_ . _hhh: 20-character field units or format.

The Connection Table [CTAB]

-

Nonblank if data line is a query rather than Sgroup
data, MQ = MACCS-II query, 1Q = ISIS query, PQ =
program name code query.

Data query operator (blank for MACCS-II).

Data Sgroup Display Information

M SDD sSs XXXXX.XXXXyyyyy.yyyy eeefgh i jjjkkk Il m noo

SSsS:

X,Y:

eee:

Jii:
kkk:

0o0:

Data Sgroup Data

M SCD sss d...
M SED sss d...

d...:

Index of data Sgroup.

Coordinates (2F10.4).

(Reserved for future use.)

Data display, A = attached, D = detached.

Absolute, relative placement, A = absolute, R =
relative.

Display units, blank = no units displayed, U =
display units.

(Reserved for future use.)

Number of characters to display (1...999 or ALL).
Number of lines to display (unused, always 1).
(Reserved for future use.)

Tag character for tagged detached display (if
non-blank).

Data display DASP position (1...9). (MACCS-1I only)

(Reserved for future use.)

Line of data for data Sgroup sss (69 chars per line,
columns 12-80)

Note: A line of data is entered as text in 69-character
substrings. Each SCD line adds 69 characters to a text
buffer (starting with successive SCDs at character
positions 1, 70, and 139). Following zero or more

2-17

2-18

CTfile Formats (December 1999)

SCDs must be an SED, which may supply a final 69
characters. The SED initiates processing of the
buffered line of text: trailing blanks are removed and
right truncation to 200 characters is performed,
numeric and formatted data are validated, and the
line of data is added to data Sgroup sss. Left
justification is not performed.

A data Sgroup may have more than one line of data,
so more than one set of SCD and SED lines can be
present for the same data Sgroup. The lines are
added in the same order that they are encountered.

If 69 or fewer characters are to be entered on a line,
they may be entered with a single SED not preceded
by an SCD. On the other hand, if desired a line may
be entered to a maximum of 3 SCDs followed by a
blank SED that terminates the line. The set of SCD
and SED lines describing one line of data for a given
data Sgroup must appear together, with no
intervening lines for other data Sgroups’ data.

Sgroup Hierarchy Information

M SPLhn8 ccc ppp ---

Ccc:

ppp:

Sgroup index of the child Sgroup.

Sgroup index of the parent Sgroup (ccc and ppp
must already be defined via an STY line prior to
encountering this line).

Sgroup Component Numbers

M SNChn8 sss o000 ...

SSS:

000:

3D Feature Properties

M $3Dnnn

M $3D...

Index of component Sgroup.

Integer component order (1...256). This limit applies
only to MACCS-II.

See below for information on the properties block of
a 3D molfile. These lines must all be contiguous.

The Connection Table [CTAB]

End of Block
M END

This entry goes at the end of the properties block
and is required for molfiles which contain a version
stamp in the counts line.

The Properties Block for 3D FeaturesEj

For each 3D feature, the properties block includes:
= One 3D features count line
= One or more 3D features detail lines

The characters M $3D appear at the beginning of each line describing a 3D
feature. The information for 3D features starts in column 7.

Figure 2-3 illustrates the molfile corresponding to the following 3D query:

2-19

CTfile Formats (December 1999)

Figure 2-3 Ctab organization of a 3D query

Normal

$3D 7 9

4.4000

5.7000

3D Query
Exclusion sphere ———»
Point
Angle
Centroid
Plane —» /
Benzene ring — < D\ 4457] N
Distance
Nitrogen atom -
3D Query]
MACCS-1110179109553D 1 1.00000 0.00000 0 Header block (see Chapter 3)
8 7 0 00O 18 V2000 : Counts line
1.0252 0.2892 1.1122C 0 0 0 0 0 O =
-0.4562 0.6578 1.3156C 0 0 0 0 0O O
-1.4813 0.3687 0.2033C 0 0 0 0 0 O
-1.0252 -0.2892 -1.1122C 0 0 0 O O O
Atom block
0.4562 -0.6578 -1.3156C 0 O O O 0 O
1.4813 -0.3687 -0.2033C 0 O 0 O 0 O
4.1401 -0.1989 1.3456 N 0 0 0 0 0 O
4.6453 0.5081 1.7417C 0 0 0 0 O O]
121000]
2 32000
341000
4 5 2 00 0 Bond block
5 6 1.0 0 0
6 1 2 000
78 1000 | [Atom list block gfabk
—i— oc
WosD 7 _] 3D Features Count Stext block
M $3D -7 6 5
M $3D 3 ’ Centroid
M $3D 6 4 2 H
M $3D -5 13
M $3D 6 0.0000 Plane
M $3 1 2 3 4 5 6
Mo $3b -8 7 Normal to Plane _
M $3D 9 10 Properties
M $3D -3 6 Point block
M $3D 9 11 -2.0000
M $30-16 12 Exclusion sphere
M $3D 12 1 0 1.5000
M $3D-12 10 Angle
M $3D 12 9 7 75.0000 105.0000
x $3D -9 3] Distance
M

END

2-20

The Connection Table [CTAB]

3D features count line

The first line in the properties block is the 3D features count line and has the
following format:

M $3Dnnn

where nnn is the number of 3D features on a model.

3D features detail lines

The lines following the 3D features count line describe each 3D feature on a
model. Each 3D feature description consists of an identification line and one
or more data lines:

= The identification line is the first line and contains the 3D feature’s type
identifier, color, and name.

= Each data line describes the construction of the 3D feature.

Identification line
The 3D feature identification line has the following format:

M $3Dfffccc aaa...aaa ttt...ttt

where the variables represent:

rf 3D feature type

cce Color number (an internal MDL number which is
terminal dependent)

aaa...aaa 3D feature name (up to 32 characters)

ttt. .ttt Text comments (up to 32 characters) used by MDL

programs (see 3D data constraints on page 2-31)

2-21

2-22

CTfile Formats (December 1999)

Table 2-3 lists the 3D feature type identifiers.

Table 2-3 3D feature type identifiers
Identifier Meaning
-1 Point defined by two points and a distance (in Angstroms)
-2 Point defined by two points and a percentage
-3 Point defined by a point, a normal line, and a distance
-4 Line defined by two or more points (A best fit line if more than two points)
-5 Plane defined by three or more points (A best fit plane if more than three
points)
-6 Plane defined by a point and a line
-7 Centroid defined by points
-8 Normal line defined by a point and a plane
-9 Distance defined by two points and a range (in Angstroms)
-10 Distance defined by a point, line, and a range (in Angstroms)
-11 Distance defined by a point, plane, and a range (in Angstroms)
-12 Angle defined by three points and a range (in degrees)
-13 Angle defined by two intersecting lines and a range (in degrees)
-14 Angle defined by two intersecting planes and a range (in degrees)
-15 Dihedral angle defined by 4 points and a range (in degrees)
-16 Exclusion sphere defined by a point and a distance (in Angstroms)
-17 Fixed atoms in the model
nnn A positive integer indicates atom or atom-pair data constraints

The Connection Table [CTAB]

Data line

The 3D feature defines the data line format. Each 3D object is treated as a
pseudoatom and identified in the connection table by a number. The 3D
object numbers are assigned sequentially, starting with the next number
greater than the number of atoms. The data line formats for the 3D feature
types are:

Type Description of Data Line

-1 The data line for a point defined by two points and a distance (A)
has the following format:

where the variables represent:

iii ID number of a point
jij ID number of a second point
ddddd . dddd Distance from first point in direction of

second point (A), 0 if not used
The following example shows POINT_1 created from the atoms 1
and 3 with a constraint distance of 2A.

The first line is the identification line. The second line is the data
line.

M $3D -1 4 POINT_1
M $3 1 3 2.0000

-2 The data line for a point defined by two points and a percentage
has the format:

where the variables represent:

iii ID number of a point

Jid ID number of a second point

ddddd . dddd Distance (fractional) relative to distance
between first and second points, 0 if not
used

2-23

2-24

CTfile Formats (December 1999)

Type
-3

Description of Data Line

The data line for a point defined by a point, a normal line, and a
distance (A) has the format:
M $3Diiilllddddd.dddd

where the variables represent:

iii ID number of a point
i ID number of a normal line
ddddd . dddd Distance (A), 0 if not used

Note: For chiral models, the distance value is signed to specify the
same or opposite direction of the normal.

The data lines for a best fit line defined by two or more points
have the following format:

M $3Dpppttttt.tttt

where the variables represent:

ppp Number of points defining the line

ttttt. tttt Deviation (&), 0 if not used.

iii Each iii, jjj, and zzz is the ID number
jjj of an item in the model that defines the
line

i

zz7 (to maximum of 20 items per data line)

The following line is defined by the four points 1, 14, 15, and 19
and has a deviation of 1.2A. The first line is the identification line.
The second and third lines are the data lines.

M $3D -4 2 N_TO_AROM

M $3D 4 1.2000

M $3D 1 14 15 19

The Connection Table [CTAB]

Type

-6

Description of Data Line

The data lines for a plane defined by three or more points (a best
fit plane if more than three points) have the following format:

M $3Dpppttttt.tttt

where the variables represent:

ppPp Number of points defining the line

Tttt tttt Deviation (A), 0 if not used.

iii Each iii, jjj,and zzz is the ID number jjj
of an item in the model that defines the line

i

zz7 (to maximum of 20 items per data line)

The following line is defined by the four points 1, 14, 15, and 19
and has a deviation of 1.2A. The first line is the identification line.
The second and third lines are the data lines.

M $3D -5 4 PLANE_2
M $3D 3
M $3D 15 14

The data line for a plane defined by a point and a line has the
following format:

M $3DIiilll
where the variables represent:
iii ID number of a point
i ID number of a line

The following plane is defined by the point 1 and the plane 16.
The first line is the identification line. The second line is the data
line.

M $3D -6 3 PLANE_1
M $3D 1 16

2-25

2-26

CTfile Formats (December 1999)

Type
-7

Description of Data Line

The data lines of a centroid defined by points have the following
format:

M $3Dppp

where the variables represent:

ppp Number of points defining the centroid

iii Each iii, jjj, and zzz is the ID number
jjj of an item in the model that defines the
centroid

]

zz7 (maximum of 20 items per data line).

The following centroid, ARO_CENTER, is defined by 3 items: 6, 8,
and 10. The first line is the identification line. The second and
third lines are the data lines.

M $3D -7 1 ARO_CENTER
M $3D 3
M $3 6 8 10

The data line for a normal line defined by a point and a plane has
the following format:

where the variables represent:
iii ID number of a point
jij ID number of a plane

The following normal line, ARO_NORMAL, is defined by the
point 14 and the plane 15. The first line is the identification line.
The second line is the data line.

M $3D -8 1 ARO_NORMAL
M $3D 14 15

The Connection Table [CTAB]

Type

-10

-11

Description of Data Line

The data line for a distance defined by two points and a range
(A) has the following format:

where the variables represent:

iii ID number of a point
jij ID number of a second point
ddddd . dddd Minimum distance (A)
22727.2727 Maximum distance (A)

The following distance, L, is between items 1 and 14 and has a
minimum distance of 4.9A and a maximum distance of 6.0A. The
first line is the identification line. The second line is the data line.

M $3D -9 6L
M $3D 1 14 4.9000 6.0000

The data line for a distance defined by a point, line, and a range
(A) has the format:

M $3Diiilllddddd.ddddzzzzz.zzzz

where the variables represent:

iii ID number of a point
11 ID number of a line

ddddd . dddd Minimum distance (A)
22727 .2727 Maximum distance (A)

The data line for a distance defined by a point, plane, and a
range (A) has the format:

where the variables represent:

iii ID number of a point
Jii ID number of a plane
ddddd . dddd Minimum distance (A)
27727.77222 Maximum distance (A)

2-27

2-28

CTfile Formats (December 1999)

Type
-12

-13

Description of Data Line

The data line for an angle defined by three points and a range (in
degrees) has the following format:

where the variables represent:

iii ID number of a point

Jii ID number of a second point
kkk ID number of a third point
ddddd . dddd Minimum degrees

772727 .7727 Maximum degrees

The following angle, THETAL, is defined by the three points: 5,
17, and 16. The minimum angle is 80° and the maximum is 105°.
The first line is the identification line. The second line is the data
line.

M $3D-12 5 THETAl
M $3D 5 17 16 80.0000 105.0000

The data line for an angle defined by two lines and a range (in
degrees) has the following format:

M $3DI1Immmddddd.ddddzzzzz.zzzz
where the variables represent:

11 ID number of a line, mmm ID number of a
second line

ddddd . dddd Minimum degrees

772727 .7727 Maximum degrees

THETAZ is defined by the lines 27 and 26 with maximum and
minimum angles of 45° and 80°. The first line is the identification
line. The second line is the data line.

M $3D-13 5 THETA2
M $3D 27 26 45.0000 80.0000

The Connection Table [CTAB]

Type
-14

-15

Description of Data Line

The data line for an angle defined by two planes and a range (in
degrees) has the following format:

where the variables represent:

iii ID number of a plane

Jii ID numbers of a second plane
ddddd . dddd Minimum degrees

77727 .7727 Maximum degrees

The data line for a dihedral angle defined by four points and a
range (in degrees) has the following format:

where the variables represent:

iii ID number of a point

Jii ID number of a second point
kkk ID number of a third point
i ID number of a fourth point
ddddd . dddd Minimum degrees

772727 .72727 Maximum degrees

DIHEDL1 is defined by the items 7, 6, 4, and 8 with minimum and
maximum angles of 45° and 80°, respectively. The first line is the
identification line. The second line is the data line.

M $3D-15 5 DIHED1
M $3D 7 6 4 8 45.0000 80.0000

2-29

CTfile Formats (December 1999)

Type Description of Data Line

-16 The data lines for an exclusion sphere defined by a point and a
distance (A) have the following format:

M $3Diiiuuuaaaddddd.dddd
M $3Dbbbccc...zzz ...

where the variables represent:
iii ID number of the center of the sphere

uuu 1 or 0. 1 means unconnected atoms are
ignored within the exclusion sphere during a
search; 0 otherwise

aaa Number of allowed atoms

ddddd . dddd Radius of sphere (A)

bbb Each bbb, ccc, and zzz

ccc is an ID number of an allowed atom.
zz7 (to maximum of 20 items per data line)

The following exclusion sphere is centered on point 24, has a
radius of 5, and allows atom 9 within the sphere. The first line is
the identification line. The second and third lines are the data
lines.

M $3D-16 7 EXCL_SPHERE
M $3D24 0 1 5.0000
M $3D 9

2-30

The Connection Table [CTAB]

Type Description of Data Line
-17 The data lines of the fixed atoms have the following format:
M $3Dppp

ppp

zZZZ

where the variables represent:

Number of fixed points

fixed atom

(to maximum of 20 items per data line)

The following examples shows 4 fixed atoms. The first line is the
identification line. The second and third lines are the data lines.

M $3D-17
M $3D 4
M $3D 3 7 12 29

3D data constraints EY &

A positive integer is used as a type identifier to indicate an atom or atom-pair
data constraint. Two lines are used to describe a data constraint. The lines
have the following format:

M $3Dnnncccaaa. - -aaabbbbbbbbpppppppppsss.- - -sss

where the variables represent:

nnn

ccc

aaa. ..aaa

bbbbbbbb

PPPPPPPPP

Database-field number
Color
Database-field name (up to 30 characters)

/BOX = box-number (source of data) (up to 8
characters)

/DASP = nl1, n2 where nl and n2 are digits from 1-9
(data size and position) (up to 9 characters)

2-31

CTfile Formats (December 1999)

SSS...SSs /DISP = 3DN (name), 3DV (value), 3DQ (query),
NOT (no text)

First three in any combination to maximum total of
15 characters

iii ID number of an atom

Jii ID number of a second atom for atom-pair data, 0 if
data is atom data

ddd. . .ddd Data constraint (based on format from database) (up
to 64 characters)

ISIS 3D data query syntax and MACCS-II 3D data
query syntax are not identical. The ISIS data query
requires a search operator, a blank space, then one
or more operands. For more information on ISIS
data query syntax, see the ISIS Help system entries
on SBF (Search By Form) or QB (Query Builder) for
entering text in a query. For information on
MACCS-II data searches, see the MACCS-II
Command Language Reference.

Note: For MACCS-II, the atom number 999 stands for all atoms. The MACCS-II
wild card character (@) can be used in the data constraints.

The following example shows a numeric data constraint for the field
CNDO.CHARGE on atom 12. The first line is the identification line. The
second line is the data line.

M $3D 7 O CNDO.CHARGE
M $3D 12 O -0.3300 -0.1300

The following example shows a numeric data constraint for the field
BOND.LENGTH on the atom pair 1 and 4. The first line is the identification
line. The second line is the data line.

M $3D 9 O BOND.LENGTH
M $3D 1 4 2.0500 1.8200

The following example shows a data constraint allowing any charge value for
the field CHARGE on all the atoms. The first line is the identification line. The
second line is the data line.

M $3D 12 0O CHARGE
M $3D999 0 @

2-32

Stereo Notes

The Connection Table [CTAB]

Parity can be illustrated as follows:

Mark a bond attached at a stereo center Up or Down to define the
configuration. Number the atoms surrounding the stereo center with 1, 2, 3,
and 4 in order of increasing atom number (position in the atom block) (a
hydrogen atom should be considered the highest numbered atom, in this case
atom 4). View the center from a position such that the bond connecting the
highest-numbered atom (4) projects behind the plane formed by atoms 1, 2,
and 3.

Note: In the figure, atoms 1, 2, and 4 are all in the plane of the paper, and
atom 3 is above the plane.

.
' -
.
1 ‘g
- . .
4 C 2°
. .
T
- — *
! O.\-
—
. . -
' *
1.

Sighting towards atom number 4 through the plane (123), you see that the
three remaining atoms can be arranged in either a clockwise or
counterclockwise direction in ascending numerical order.

¢ ‘/ Parity = 1 ¢ j Parity = 2

2 1

The Ctab lists a parity value of 1 for a clockwise arrangement at the stereo
center and 2 for counterclockwise. A center with an Either bond has a parity
value of 3. An unmarked stereo center is also assigned a value of 3. The first
example above has a parity value of 2.

2-33

Chapter 3

Molfiles

molfile

A molfile consists of a header block and a connection table. Figure 3-1 shows
a molfile for alanine corresponding to the following structure:

Figure 3-1 Molfile organization illustrated using alanine

13 c CHIRAL
3
L-Alanine 0-
1 2 6
N+
4
0
5
L-Alanine (13C)]
GSMACCS-1110169115362D 1 0.00366 0.00000 0 Header block
6 500 1 0 3 V2000 — Counts line
-0.6622 0.5342 0.0000C O 0 2 0 0 O
0.6220 -0.3000 0.0000C O 0 O 0 O O
-0.7207 2.0817 0.0000C 1 0 0 O 0 O Atom block
-1.8622 -0.3695 0.0000N O 3 0 0 0O O
0.6220 -1.8037 0.00000 0 0 O 0 O O
1.9464 0.4244 0.00000 O 5 0 0 0 O — Connection
121 000 table (Ctab)
131100 Bond block
1 41 00 0
2 52 00 0)
5 6 10 0 0 Blocks not used ;EISI block
M CHG 2 4 1 6 -1 in this Ctab Stext block
M 1S0 1 3 13 Properties block
M END |

3-1

CTfile Formats (December 1999)

The format for a molfile is:

= Header block: This identifies the molfile with the molecule name, user’s
name, program, date, and other miscellaneous information and comments

= Ctab block (described in Chapter 2)

The detailed format for the header block follows.

The Header Block

Line 1:

Line 2:

(FORTRAN:

Line 3:

3-2

Molecule name. This line is unformatted, but like all other lines in a molfile
may not extend beyond column 80.

Caution: This line must not contain any of the reserved tags that identify any
of the other CTAB file types such as $MDL (RGfile), $$$$ (SDfile record
separator), $RXN (rxnfile), or $RDFILE (RDfile headers).

User’s first and last initials (1), program name (P), date/time (M/D/Y,H:m),
dimensional codes (d), scaling factors (S, s), energy (E) if modeling program
input, internal registry number (R) if input through MDL form. This line has
the format:

1 1PPPPPPPPMMDDYYHHMMAdSSssssssssssEEEEEEEEEEEERRRRRR
A2 A8 <--A10--->A212 F10.5 F12.5 16)

A blank line can be substituted for line 2.

A line for comments. If no comment is entered, a blank line must be present.

RGfiles

*r

*m

Chapter 4

RGfile

molfile

The format of an RGfile (Rgroup query file) is shown below. Lines beginning
with $ define the overall structure of the Rgroup query; the molfile header
block is embedded in the Rgroup header block.

In addition to the primary connection table (Ctab block) for the root structure,
a Ctab block defines each member (*m) within each Rgroup (*r).

$MDL REV 1 date/time

$MOL

$HDR

[Molfile Header Block (see Chapter 3) = name, pgm info, comment]
$END HDR

$CTAB

[Ctab Block (see Chapter 2) = count + atoms + bonds + lists + props
$END CTAB

$RGP

rrr [where rrr = Rgroup number]

$CTAB

[Ctab Block]

$END CTAB

$END RGP

$END mol

where:

*r (Rgroup) is repeated to a maximum of 32
*m (member) is repeated to a maximum of 255 total atoms and bonds per
Rgroup

CTfile Formats (December 1999)

Figure 4-1 Example of an RGfile (Rgroup query file)

$MDL REV 1 160CT91 15:40

$MoL
$HDR

GSMACCS-1110169115402D 1

$END HDR
$CTAB
9 9 0 0 0 O
1.3337 0.7700

1.3337 -0.7700

0.0000 3.0800

2.6674 1.5400
-2.6674 1.5400
12 1 0 0 O

3 9

0.00353

0.00000

4 V2000

0.0000C 0 O O O O

0.0000 C

0.0000 R#
0.0000 R#
0.0000 R#

0 0 0
0 0 0
0 0 0

o O o
o O o

o

0 0 0 O
Number of entries on line

Rgroup label location and

RGP 7 1 |8

2

| Rgroup number

©

LOG
LOG

1 2 0
2 0 0

M
M
M
M END
$END CTAB
$RGP
1
$CTAB
1 0 0 0 0 O
12.2100 14.3903
M APO 1 1 1
M END
$END CTAB
$END RGP
$RGP
2
$CTAB
2 1 0 0
-1.4969
0.0431
1 2 2 0
M APO 1 1 1
M END
$END CTAB
$CTAB
1 0 0 0 0 O
12.2100 14.3903
M APO 1 1 1
M END
$END CTAB
$END RGP
$END mol

.0508
.0508

O o oo

0.0000 C

0.0000 C
0.0000 O

0.0000 N

O o oo

If/then, RestH, and Occurrence

2 V2000
0O 0 0 0 O

2 V2000
0O 0 0 0 O
0O 0 0 0 O

2 V2000
0O 0 0 0O O

o

Molfile
header
block

Counts line

Atom block
of root

Bond block of root

{;\tom list block

text block
Properties block

of root

Ctab for
Rgroup 1
member 1

Ctab for
Rgroup 2
member 1

Ctab for
Rgroup 2
member 2

RGfile
header
block

Ctab for
Rgroup
root

Block for
Rgroup R1

Block for
Rgroup R2

4-2

RGfiles

The RGfile shown in Figure 4-1 corresponds to the following Rgroup query:

R1
IF R1 THEN R2
R2 R2 *
\ / R1= \ R1>0
C
* *
R2= \ \ R2=0
(opuu—g] N

SDfiles

*C

Chapter 5

SDfile -

molfile

An SDfile (structure-data file) contains the structural information and
associated data items for one or more compounds. An example of an SDfile is
shown in Figure 5-1. The format is:

[Molfile (see Chapter 3)]

Data Header]
*d *l[Data]

‘ [Blank line]
$383
where:

*1 is repeated for each line of data
*d is repeated for each data item
*c is repeated for each compound

A [Molfile] block has the molfile format described in Chapter 3 or Chapter 10.

A [Data Header] (one line) precedes each item of data, starts with a greater
than (>) sign, and contains at least one of the following:

= The field name enclosed in angle brackets. For example: <melting.point>

= The field number, DTn , where n represents the number assigned to the
field in a MACCS database

5-1

CTfile Formats (December 1999)

Optional information for the data header includes:

= The compound’s external and internal registry numbers. External registry
numbers must be enclosed in parentheses.

= Any combination of information
The following are examples of valid data headers:

> <MELTING.POINT>

> 55 (MD-08974) <BOILING.POINT> DT12
> DT12 55

> (MD-0894) <BOILING.POINT> FROM ARCHIVES

SDfiles

Figure 5-1 Example of an SDfile

1,2 CYCLO-C6 DI-COOH TRANS,L
MACCS-1106039016292D 1 0.00339 0.00000 25 Header block

1212 0 0 1 O 1 V2000]
-0.0238 -0.7702 0.0000 C 0O 01 0 0 O .

i i Molfile
2.6974 0.7634 0.00000 0 O O O O O Connection

121 0 0 O table

710 1 0 O O
M END |
> 25 <MELTING.POINT>
179.0 - 183.0

_ Data header Data item

=| Data
> 25 <DESCRIPTION> _ Blank line

PW(W)

Compound

> 25 <ALTERNATE.NAMES>
1,2 CYCLOHEXANE-DICARBOXYLIC ACID TRANS,L

HEXAHYDROPHTHALIC ACID TRANS,L Non-

Data items structural
> 25 <DATE> data

01-10-1980

R —

> 25 <CRC.NUMBER>
C-0710Dat

$8$$
2-METHYL FURAN
MACCS-1106039016302D 1 0.00186 0.00000 29

. __| Delimiter |
Header]
block

6 6 0 0 0 0 1 V2000

0.5343 0.3006 0.0000C 0 O O 0 0 O Connection | Molfile
. B table
-2.0038 0.2857 0.0000C O O O O O O
1 2 2 0 0 0

5 6 2 0 0 O
M END —
> 29 <DENSITY> _1 Compound
0.9132 - 20.0 !
> 29 <BOILING.POINT>
63.0 (737 MVM)
79.0 (42 MM)
> 29 <ALTERNATE.NAMES>
SYLVAN
> 29 <DATE>
09-23-1980
> 29 <CRC.NUMBER>

F-0213 fl Delimiter |
$5$$

Data items | Non-

structural
data

5-4

CTfile Formats (December 1999)

A [Data] value may extend over multiple lines containing up to 200 characters
each. A blank line terminates each data item.

A line containing four dollar signs ($$$$) terminates each complete data block
describing a compound.

A datfile (data file) is effectively an SDfile with no [Molfile] descriptions or
$$$$ delimiters. The [Data Header] in a datfile must include either an external
or internal registry number in addition to a field name or number.

SDfile after a CFS search

After a conformationally flexible substructure (CFS) search, the following
format information is appended by ISIS/Base PL to your SDfile after the
connection table:

= Query information (M $3D appendix lines added to embedded molfile)
= CFS generated data (*DATA)
< MAPPED ATOMS and BONDS

This information describes, for example, how query atoms are mapped, the
atom coordinates in models, and what is fitted during a CFS search.

SDfiles

Figure 5-2 Example of SDfile with appended CFS query information

CHG 2 14 -1 16 1

M

M $3D 5 L
M $3D -9 3

M $3D 13 18 6.3000 8.3000

M $3D -9 3

M $3D 18 9 3.1000 5.1000

M $3D -9 3

M $3D 18 4 2.4000 4.4000

M $3D -9 3

M $3D 13 9 2.8000 4.8000

M $3D -9 3

M $3D 13 4 3.1000 5.1000

M END

> 31 <*DATA>

Method = Derivative ;|
> 31 <MAPPED ATOMS AND BONDS>

(8 13 14 3 9 4 18) (12 13 7 8)

$$5$

3D Query Fields

CFS-Generated Data

Mapping Atoms and Bonds

5-5

Chapter 6

Rxnfiles

rxnfile

Rxnfiles contain structural data for the reactants and products of a reaction.
An example rxnfile for a simple reaction is shown in Figure 6-1. The format is:

[Rxnfile Header]

—_rrrppp
*r $MOL
[Molfile of reactant]
*p $MOL

[Molfile of product]
where:

*r is repeated for each reactant
*p is repeated for each product

Header Block

Line 1: $RXN in the first position on this line identifies the file as a reaction file.
Line 2: A line which is always blank.
Line 3: The program name and version (P), date/time (M/D/Y,H:m), and reaction

registry number (R). This line has the format:

PPPPPPPPMMDDYYHHMMRRRRRRRR
(FORTRAN: Al4 <--Al2---> 18)

A blank line can be substituted for line 3.
Line 4: A line for comments. If no comment is entered, a blank line must be present.

6-1

CTfile Formats (December 1999)

Figure 6-1 Rxnfile for the acylation of benzene

$RXN " | Header block
#Reactants/
REACCS81 1017911041 7439 j*gﬂroducts
}E/lolfi/e
2 1 " |_delimiter
$MOL
REACCS8110179110412D 1 0.00380 0.00000 315 Molfile for
first
4 300000UO0GO0UO00 reactant
0.3233 -0.2358 0.0000C 0 0 0 0 0 0 0 0 O 1 0 O
~1.0346 -0.9623 0.0000C O 0 0 0 0 0 0 0 0 2 0 O
0.3233 1.4149 0.00000 0 0 0 0 0 0 0 0 O 3 0 O
1.6431 -1.0308 0.0000ClI 0 0 0 0 0 0 0 O 0 0 O O j@olﬁle
121 0 0 0 2 = Ldelimiter
132000 2
14 100 0 4
$MOL
REACCS8110179110412D 1 0.00371 0.00000 8
6 6 00 000O0O0O0 O Molfile for
1.3335 -0.7689 0.0000C O 0 0 0 0 0 0 0 O 5 O O second
1.3335 0.7689 0.0000C 0 O O 0 0 0 O O O 6 O O reactant
0.0000 -1.5415 0.0000C 0 0 0 0 0 0 0 0 O 7 0 O
0.0000 1.5415 0.0000C O 0 0 0 0 O O O O 8 0 O
~1.3335 -0.7689 0.0000C O 0 0 0 0 0 0 0 0 9 0 O
-1.3335 0.7689 0.0000C 0O 0 0 0 0 O 0 O 010 O O
121000 2
132000 2
2 4 2 00 0 2
351000 2 j_E/’O/ﬁ/e
4 6 1.0 0 0 2 = | delimiter
56 2 00 0 2
$MOL
REACCS8110179110412D 1 0.00374 0.00000 255
9 9000000000
_0.5311 -0.1384 0.0000C 0 0 0 0 0 0 0 0 O 5 0 O
-1.8626 0.6321 0.0000C O O 0 0 0 0 0 O O 6 0 O
-0.5311 -1.6943 0.0000C 0 0 0 0 0 0 0 0 O 7 0 O
0.8191 0.6284 0.0000C 0 0 0 0 0 0 0 0 0 1 0 O Molfile for
_3.2278 -0.1346 0.0000C O 0 0 0 0 0 0 O O 8 0 O product
-1.8813 -2.4723 0.0000C 0 0 0 0 0 0 0 0 0 9 0 O
2.1282 -0.1085 0.0000C 0 0 0 0 0 0 0 0 O 2 O O
0.8191 2.2292 0.00000 0 0 0 0 0 0 0 0 O 3 0 O
-3.2278 -1.6831 0.0000C 0 0 0 0 0 O 0 O 010 O O
121000 2
6 9 2 00 0 2 —

6-2

Rxnfiles

Reactants/Products

Molfile Blocks

A line identifying the number of reactants and products, in that order. The
format is:

rrrppp

where the variables represent:
rer Number of reactants

ppPpP Number of products

A series of blocks, each starting with $MOL as a delimiter, giving the molfile
for each reactant and product in turn. The molfile blocks are always in the
same order as the molecules in the reaction; reactants first and products
second.

The rxnfile in Figure 6-1 corresponds to the following reaction:

o] g
c|-|3/ c

Note: MACCS-II cannot read or write connection tables for reactions.

RDfiles

Chapter 7

RDfile
RDfile — | Data
—) |
rxnfile

molfile

molfile

[ca»]

An RDfile (reaction-data file) consists of a set of editable “records.” Each
record defines a molecule or reaction, and its associated data. An example
RDfile incorporating the rxnfile described in Chapter 6 is shown in Figure 7-1.
The format for an RDfile is:

[RDfile Header]
[Molecule or Reaction ldentifier]

*r ~d | [Data-field ldentifier]
| [Data]
where:

*d is repeated for each data item
*r is repeated for each reaction or molecule

Each logical line in an RDfile starts with a keyword in column 1 of a physical
line. One or more blanks separate the first argument (if any) from the
keyword. The blanks are ignored when the line is read. After the first
argument, blanks are significant.

RDfile Header

Line 1:

Line 2:

CTfile Formats (December 1999)

An argument longer than 80 characters breaks at column 80 and continues in
column 1 of the next line. (The argument may continue on additional lines up
to the physical limits on text length imposed by the database.)

The RDfile must not contain any blank lines except as part of embedded
molfiles, rxnfiles, or data. An identifier separates records.

$RDFILE 1: The [RDfile Header] must occur at the beginning of the physical
file and identifies the file as an RDfile. The version stamp “1” is intended for
future expansion of the format.

$DATM: Date/time (M/D/Y, H:m) stamp. This line is treated as a comment
and ignored when the program is read.

Molecule and Reaction Identifiers

A [Molecule or Reaction Identifier] defines the start of each complete record in
an RDfile. The form of a molecule identifier must be one of the following:

$MFMT [$MIREG internal-regno [$MEREG external-regno]] embedded molfile
$MIREG internal-regno
$MEREG external-regno

7-2

where:
< $MFMT defines a molecule by specifying its connection table as a molfile

= $MIREG internal-regno is the internal registry number (sequence number
in the database) of the molecule

= $MEREG external-regno is the external registry number of the molecule
(any uniquely identifying character string known to the database, for
example, CAS number)

= Square brackets ([]) enclose optional parameters

= An embedded molfile (see Chapter 3) follows immediately after the
SMFMT line

RDfiles

The forms of a reaction identifier closely parallel that of a molecule:

$RFMT [$RIREG internal-regno [$REREG external-regno]] embedded rxnfile

$PCRXN [$RIREG internal-regno [$REREG external-regno]] embedded CPSS rxnfile EH
$RIREG internal-regno

$REREG external-regno

where:

$RFMT defines a reaction by specifying its descripton as a rxnfile and
$PCRXN defines a reaction by specifying its descripton as a CPSS-style
rxnfile

$RIREG internal-regno is the internal registry number (sequence number
in the database) of the reaction

$REREG external-regno is the external registry number of the reaction (any
uniquely identifying character string known to the database)

Square brackets ([]) enclose optional parameters

An embedded rxnfile (see Chapter 6) follows immediately after the SRFMT
line, and an embedded CPSS-style rxnfile follows immediately after the
$PCRXN Sl§ line

Data-field Identifier

The [Data-field Identifier] specifies the name of a data field in the database.
The format is:

$DTYPE field name

Data

Data associated with a field follows the field name on the next line and has
the form:

$DATUM datum

The format of datum depends upon the data type of the field as defined in
the database. For example: integer, real number, real range, text, molecule
regno.

7-4

CTfile Formats (December 1999)

For fields whose data type is “molecule regno,” the datum must specify a
molecule and, with the exception noted below, use one of the formats
defined above for a molecular identifier. For example:

$DATUM $MFMT embedded molfile
$DATUM $MEREG external-regno
$DATUM $MIREG internal-regno

In addition, the following special format is accepted:
$DATUM molecule-identifier

Here, molecule-identifier acts in the same way as external-regno in that it can
be any text string known to the database that uniquely identifies a molecule.
(It is usually associated with a data field different from the external-regno.)

RDfiles

Figure 7-1 Example of a reaction RDfile

$RDFILE 1

$DATM 10/17/91 10:41
$RFMT $RIREG 7439

$RXN

REACCS81 1017911041 7439

2 1
$MoL

REACCS8110179110412D 1 0.00380

4 3 0 0 0OOO O OOTPO
141 00 0 4
$mMoL

REACCS8110179110412D 1 0.00371

6 6 0 0O 0OOO OO OO
5 6 2 0 0 0 2
$MoL

REACCS8110179110412D 1 0.00374
9 900 0 0 0 O0O0O0OTO0
6 9 2 0 0 0 2

$DTYPE rxn:VARIATION(1) : rxnTEXT(1)

$DATUM CrClI3
$DTYPE rxn:VARIATION(1) :LITTEXT(1)

0.00000

0.00000

0.00000

315

8

255

Rxnfile
header

:l_E?eactants
= |[#Products

Molfile for
first
reactant

Molfile for
second
reactant

Molfile for
product

$DATUM A G Repin, Y Y Makarov-Zemlyanskii, Zur Russ Fiz-Chim, 44,

p.2360, 1974

$DTYPE rxn:VARIATION(1) :CATALYST(1) :REGNO

$DATUM $MFMT $MIREG 688
REACCS8110179110412D 1 0.00371
4 3 0 0 OOO OO OTPO

14 1 00 0O

0.00000

$DTYPE rxn:VARIATION(L) :PRODUCT(1):YIELD

$DATUM 70.0

$RFMT $RIREG 8410
$RXN

REACCS81 1017911041 8410

2 1
$MOoL

0

] RDfile header

Mol/Rxn
identifier

Data block
for reaction

Start of next
record

7-5

Chapter 8

Atom Limit Enhancements

The formats presented in this chapter were added to support the chemical
representation enhancements of ISIS 2.0 Desktop.

Phantom Extra Atom

The format for phantom extra atom information is as follows:

M PXA aaaxxXXXX.XXXXYYYVY.Yyyyzzzzz_.zzzz H e...

where:

aaa = Index of (real) atom for attachment

Xyz = Coordinates for the added atom

H = Atom symbol

e... = Additional text string (for example, the superatom

label)
The FORTRAN format for the phantom extra atom entry is as follows:
(14,4F10.4,1X,A3,1X,A)

The bond to the added phantom atom is added as a crossing bond to the
outermost Sgroup that contains atom aaa. Note this appendix supplies
coordinates and up to 35 characters of ‘label’ that can be used for the
ISIS/Desktop superatom conversion mechanism. The 1SIS/Desktop uses this
appendix to register hydrogen-only superatoms, which are often used as
superatom leaving groups on the desktop, but which cannot be directly
registered into host database. The hydrogen-only leaving groups are
converted to PXA appendices for registration, and converted back when
ISIS/Desktop reads the structure.

8-1

Superatom Attachment Point

8-2

CTfile Formats (December 1999)

The following are limitations on phantom extra atom;

= Superatom nesting cases

= No bonded phantom atom-phantom atom support

The format for superatom attachment point is as follows:

M SAP sssnn6 iii 000 cc

where:

SSS

nn6

CcC

= Index of superatom Sgroup

= Number of iii,oo00,c entries on the line (6
maximum)

= Index of the attachment point atom

= Index of atom in sss that leaves when iii is
substituted

= 2 character attachment identifier (for example, ‘H’
or ‘T’ for head/tail). No validation of any kind is
performed, and * ' is allowed. 1SIS/Desktop uses the
first character as the ID of the leaving group to
attach if the bond between ooo and iii is deleted,
and uses the second character to indicate the
sequence polarity: 1 for left, r for right, and x for
none (a crosslink).

The bond iii-ooo0 is either a sequence bond, a sequence crosslink bond, or a
bond to a leaving group that terminates a sequence or caps a crosslink bond.
In some cases, this bond may have been deleted by the user, probably to
perform a substructure search. In this case, ooo will be 0. If the leaving group
attached to iii consists of only a hydrogen, the leaving group will be
replaced by a Phantom Extra Atom, as previously described. In this case, iii
is set equal to ooo as a signal to ISIS/Desktop that a hydrogen-only leaving
group must be reattached to iii.

The FORTRAN format for the superatom attachment point entry is as follows:

(14,14,1X,A2)

An attachment point entry is one iii,oo00,cc triad.

Atom Limit Enhancements

Multiple M SAP lines are permitted for each superatom Sgroup to the
maximum of the atom attachment limit. The order of the attachment entries is
significant because the first iii,000,c becomes the first connection made
when drawing to the collapsed superatom, and so forth.

Superatom Class

The format for superatom class is as follows:

M SCL sss d...

where:
sss = Index of superatom Sgroup
d... = Text string (for example, PEPTIDE, ...) 69

characters maximum

This appendix identifies the class of the superatom Sgroup. It distinguishes,
for example, peptide groups from nucleotides.

Large REGNO

The format for the regno appendix is as follows:

M REG r...

where:

r... =Free format integer regno

This appendix supports overflow of the 16 regno field in the molfile header. If
this appendix is present, the value of the regno in the molfile header is
superceded.

Sgroup Bracket Style

The format for the Sgroup bracket style is as follows:

M SBTnn8 sss ttt ...
where:

sss = Index of Sgroup

8-3

8-4

CTfile Formats (December 1999)

ttt = Bracket display style: 0 = default, 1 = curved
(parenthetic) brackets

This appendix supports altering the display style of the Sgroup brackets.

Chapter 9

Moving CTfiles On and Off the Clipboard in
ISIS

Clipboard Objects

The two objects hamed here as SK and mSK are used to move MDL sketches
on and off the clipboard in ISIS. The names and contents of these with
respect to the PC (MS Windows), Macintosh, and SGI (Motif) platforms are
summarized in Table 9-1 and described in the ISIS Sketch File Formats
document. The additional object, CT, is also introduced. This contains
structural information in CTfile format to facilitate structure exchanges
between ISIS and non-MDL applications. The object, mSK, is not meaningful
to platforms such as SGI, because Motif lacks a metafile format like the
Macintosh or MS Windows metafile for storing drawing commands.

Table 9-1 SIS clipboard objects-names and content

Clipboard MS Macintosh Scrap SGI Motif Contents Available in ISIS
Object Windows Type Clip-board version
Clipboard Format
Format
SK MDLSK swsD MDL_SKETCH Buffered MDL 1.0 and up
sketch file
CT MDLCT swsC MDL_MOL Buffered MDL 1.01 and up
CTfile (molfile,
RGfile or
rxnfile)
mSK CF_METAFIL PICT Picture with 1.0 and up
EPICT MDL sketch
embedded

9-1

CTfile Formats (December 1999)

ISIS will look for the objects listed in Table 9-1 in the order SK, CT, mSK and
will take the first available for the image. The metafile, mSK, cannot be
distinguished until after it is read from the clipboard, because the embedded
file is not identified.

Note: CT has variable length lines. Each line is prefixed with one byte
containing the length of the line. Thus, a blank line contains one byte of zero.

Hints on Creating a Reader/Writer For CT

Separate input/output routines from the CTfile interpreter.

Use open/read/close routines to read the contents of the buffer from the
clipboard line by line.

Copying from the Clipboard

Look for CT on the clipboard. If present and the first line contains;
= “$RXN", the file is a rxnfile

- “$MDL”, the file is an RGfile

= Otherwise, the file is a molfile

Alternatively, you can develop your own procedure for reading a sketch file
(SK* in Figure 9-1).

9-2

Moving CTfiles On and Off the Clipboard in ISIS

Figure 9-1 Transfer options

ISIS

clipboard

SK
CT
mSK**

mSK CT*, SK*

mSK CT*, SK*

Display application Structural application
e.g. word processor e.g. modelling program

* Employing user-supplied file reader or writer
** Except SGI

Copying to the clipboard
Clear the clipboard of any existing data.
You may choose from among the following options recognizable by ISIS:

= Post a CT containing a buffered CTfile (rxnfile, RGfile or molfile) (with
Version 1.01 or later of ISIS).

= Post an SK containing a buffered sketch file.

= Post your own rendering as a metafile or PICT image (PC and Macintosh,
respectively) recognizable only by 1SIS/Draw. However, this does not
preserve the chemistry.

CTfile Formats (December 1999)

Sample Code For Copying or Pasting a CTfile in MS Windows

/* cutpaste.c */

extern HWND hwnd; /* handle to application’s main window */

static int ctFormat;
InitClipBoard()
{
ctFormat = RegisterClipboardrFormat(’MDLCT”’);

CopyToClipboard(HANDLE ghCTBuffer)

/*ghCTBuffer is a global handle to a buffer containing the ASCII ctfile. Do not

delete it because it becomes the property of the clipboard after the

SetClipboardData() call. */

{
if (OpenClipboard(hwnd)) {
EmptyClipboard();
SetClipboardData(ctFormat, ghCTBuffer);
CloseClipboard();
}
}
/o

PasteFromClipboard()
{
HANDLE ghCTBuffer = NULL;
if (IsClipboardFormatAvailable(ctFormat)) {
it (OpenClipboard(hwnd)) {
ghCTBuffer = GetClipboardData(ctFormat);
CloseClipboard();
}
}

*/ HANDLE

/*ghCTBuffer is a global handle to a buffer containing the ASCII ctfile. It is

still the property of the clipboard so do not delete or alter it. */

return(ghCTBuffer);

9-4

PART Il
Extended File Formats

Chapter 10

The Extended Molfile Format

no
structure
molfile

appendix

The extended (V3000) molfile consists of a regular molfile “no structure”
followed by a single molfile appendix that contains the body of the
connection table (Ctab). Figure 10-1 shows both an alanine structure and the
extended molfile corresponding to it. See Figure 2-1 for the V2000 version of
this same structure.

10-1

CTfile Formats (December 1999)

Figure 10-1 Extended molfile organization illustrated using alanine

CHIRAL

L-Alanine

L-Alanine
GSMACCS-1107129516502D 1 0.00366 0.00000 0 Header block
Figure 1, J. Chem. Inf. Comput. Sci., Vol 32, No. 3., 1992 ~<— Comments line

0 00

=EEEEEEEEEEZEEEEEEEEEETEE®R

V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
END

BEGIN CTAB -
COUNTS 6 50 0 1 :I —
BEGIN ATOM —

oA WNPR
oo =z00

END

BEGIN BOND]

11
21
31
4 2
51
END
END

0 O 999 V3000

Counts line

-0.6622 0.5342 0 0 CFG=2
0.6622 -0.3 0 0O

-0.7207 2.0817 0 O MASS=13
-1.8622 -0.3695 0 0 CHG=1
0.622 -1.8037 0 O

1.9464 0.4244 0 0 CHG=-1
ATOM

Atom block

12
1 3 CFG=1
14 Bond block
25

26

BOND
CTAB Blocks not used ————| Rgroup block
in this Ctab 3D block —

qe1) 8Jqe] UoNI8ULI0D

Sgroup block

10-2

Note that the “no structure” is flagged with the “V3000” instead of the “V2000”
version stamp.

The Extended Molfile Format

There are two other changes to the header in addition to the version:

= The number of appendix lines is always written as 999, regardless of how
many there actually are. (All current readers will disregard the count and
stop at “M END”.)

= The “dimensional code” is maintained more explicitly. Thus “3D” really
means 3D, although “2D” will be interpreted as 3D if any non-zero Z
coordinates are found.

Unlike the V2000 molfile, the V3000 extended Rgroup molfile has the same
header format as a non-Rgroup molfile.

Note: Do not create a molfile with a pre-V3000 Rgroup header ("$MDL”, and
so forth) but with V3000 Ctab blocks. This is not allowed. A pre-V2000
Rgroup molfile can only have embedded molfiles that are also pre-V3000
versions, for example, the version is either “vV2000” or “ .

Specifications For Atom and Bond Descriptions

The general syntax of an entry is:
M V30 key posval posval ... [keyword=value] [keyword=value] ...
or

M V30 BEGIN key [blockname]
M V30 posval posval ... keyword=value keyword=value ...

M V30 END key

Each line must begin with “M V30 ” with the two blank spaces after M and
one blank space after 30. Following this is a list of zero or more required
positional values (posval). Optional values may follow which use a
‘KEYWORD-=value’ format. Items are separated by white space. There can
also be white space preceding the first item. Trailing white space is ignored.

The value of a keyword can be a list containing two or more values:
KEYWORD=(N vall val2 ... valN)
where N specifies the number of items that follow.

Values (posval, value, or vall, and so forth) can be strings. Strings that
contain blank spaces or start with left parenthesis or double quote, must be
surrounded by double quotes. A double quote may be entered literally by
doubling it.

10-3

10-4

CTfile Formats (December 1999)

Each entry is one line of no more than 80 characters. To allow continuation
when the 80-character line is too short, use a dash (-) as the last character.
When read, the line is concatenated with the next line by removing the dash
and stripping the initial “M V30 ” from the following line. For example:

M V30 10 20 30 “abc-
M V30 def”

is read as:

M V30 10 20 30 *““abc def”

Generally, each section of the molfile is enclosed in a block that consists of
lines such as:

M V30 BEGIN key [blockname]

M V30 END key

The ‘key’ value defines the kind of block, for example, CTAB, ATOM, or
BOND. Depending upon the type of block, there may or may not be values
on the BEGIN line.

Conventions
The new format conventions used in this chapter are as follows:

UPPERCASE Literal text, to be entered as shown. Only the
position of "M V30 ” is significant; white space may
be added anywhere else to improve readability. Note
that both lower- and uppercase characters, or any
combination of them, are acceptable for literals.
They are shown here in uppercase only for
readability.

lowercase A token, which is defined elsewhere.
[1 An optional item. Do not include the brackets.

[T An optional item, where there may be zero, one,
two, or more of the item.

| Separates two or more options, only one of which is
valid.

/ Separates two or more items. Either or both may
appear in any order.

The Extended Molfile Format

4 Braces are used for grouping. They indicate
indefinite or definite repeat.

The Extended Connection Table

The features of the extended connection table are described in this section.

CTAB block

A Ctab block defines the basic connection table, which is defined as:

M V30 BEGIN CTAB [ctabname]
counts-line

atom-block

[bond-block]

[sgroup-block]

[3d-block]

[link-Tine]*

M V30 END CTAB

The atom block, like the counts line, is required. The Sgroup block, 3D block,
and link lines may occur in any order after the atom and bond blocks. The
counts line, atom block, and bond block must appear in the order indicated.

Counts line

A counts line is required, and must be first. It specifies the number of atoms,
bonds, 3D objects, and Sgroups. It also specifies whether or not the CHIRAL
flag is set. Optionally, the counts line can specify molregno. This is only used
when the regno exceeds 999999 (the limit of the format in the molfile header
line). The format of the counts line is:

M V30 COUNTS na nb nsg n3d chiral [REGNO=regno]

where:

na = number of atoms

nb = number of bonds

nsg = number of Sgroups

n3d = number of 3D constraints

chiral = 1 if molecule is chiral, 0 if not
regno = molecule or model regno

10-5

CTfile Formats (December 1999)

Atom block

An atom block specifies all node information for the connection table. It must
precede the bond block. It has the following format:

V30 BEGIN ATOM

V30 index type x y z aamap -

V30 [CHG=val] [RAD=val] [CFG=val] [MASS=val] -

V30 [VAL=val] -

V30 [HCOUNT=val] [STBOX=val]l [INVRET=val] [EXACHG=val] -
V30 [SUBST=val] [UNSAT=val] [RBCNT=val] -

V30 [ATTCHPT=val] -

V30 [RGROUPS=(nvals val [val ...]] -

V30 [ATTCHORD=(nvals nbrl vall [nbr2 val2 ...])] -

=E====EEEEEEZSEEZ

M V30 END ATOM
The values are described in Table 10-1.

Table 10-1 Meaning of values in the atom block

Field Meaning Values Notes

index Atom index Integer >0 Identifies atoms. The actual
value of the index does not
matter as long as each index is
unique to each atom. However,
extremely large numbers used
as indexes can cause the
program to fail to allocate
memory for the
correspondence array.

type Atom type Type = reserved atom oratom or A character string. If the string
[NOT] ‘[‘atom, atom,...”]’ contains white space, it must
be quoted. It can be a single
atom or an atom list enclosed
in square brackets with an
optional preceding NOT.

where reserved atom =

R# = Rgroup

A = "any” atom

Q=anyatombutCorH

* = “star” atom

Atom = character string For example, ‘C’ or ‘CI’

Xy z Atom coordinates Angstroms

10-6

The Extended Molfile Format

Table 10-1 Meaning of values in the atom block (Continued)

Field

Meaning

Values

Notes

aamap

CHG

RAD

CFG

MASS
VAL

HCOUNT

STBOX

INVRET

EXACHG

Atom-atom mapping

Atom charge

Atom radical

Stereo configuration

Atomic weight

Valence

Query hydrogen
count

Stero box

Configuration
inversion

Exact change

0 = no mapping

> 0 = mapped atom
Integer

0 = none (default)
0 = none (default)
1 =singlet

2 = doublet

3 =triplet

0 = none (default)
1 = odd parity

2 = even parity

3 = either parity
Integer >0
Integer >0 or

0 = none (default)
-1=1zero

Integer >0 or

0 = not specified (default)

-1=zero

0 = ignore the configuration of
this double bond atom

(default)

1 = consider the stereo
configuration of this double

bond atom

0 = none (default)

1 = configuration inverts
2 = configuration retained

0 = property not applied

(default)

1 = exact change as displayed in

the reaction

Reaction property

Same range as V2000.

Default = natural abundance

Abnormal valence

Same maximum as V2000.

Both atoms of a double bond
must be marked to search
double bond stereochemistry

Reaction property

Reaction property

10-7

CTfile Formats (December 1999)

Table 10-1 Meaning of values in the atom block (Continued)

Field Meaning Values Notes
SUBST Query substitution Integer >0 or Same maximum as V2000.
count
0 = not specified (default)
-1=none
UNSAT Query unsaturation 0 = not specified (default)
flag
1 = unsaturated
RBCNT Query ring bond Integer >0 or Same maximum as V2000.
count
0 = not specified (default)
-1=none
ATTCHPT Rgroup member Attachment points on member: When the Rgroup member
attachment points atom has two attachment
points, the atom with the
lowest index number attaches
to the first attachment point
-1 =first and second site
1 =first site only
2 = second site only
RGROUPS nvals isthe Integer > 0
number of Rgroups
that comprise this
R# atom.
val is the Rgroup
number.
ATTCHORD nvals isthe Integer > 0 A list of atom neighbor index

number of values
that follow on the
ATTCHORD line

nbrlis atom
neighbor index #1,
nbr2 is index #2...

vallisthe
attachment order for
the nbri
attachment...

and atom neighbor value pairs
that identify the attachment
order information at the R#
atom

10-8

The Extended Molfile Format

Bond block

A bond block specifies all edge information for the connection table. It must
precede the Sgroup or 3D blocks. Its format is:

M V30 BEGIN BOND
M V30 index type atoml atom2 [CFG=val] [TOPO=val] [RXCTR=val] [STBOX=val]

M V30 END BOND
where the values are described in Table 10-2.

Table 10-2 Meaning of values in the bond block

Field Meaning Values Notes

index Bond index Integer >0 The actual value of the index
does not matter as long as all are
unique. However, extremely large
numbers used as indexes can
cause the program to fail to
allocate memory for the
correspondence array.

type Bond type Integer: Types 4 through 8 are for queries
only.
1 =single
2 = double
3 =triple
4 = aromatic

5 = single or double

6 = single or aromatic
7 = double or aromatic
8 =any

atoml,atom?2 Atom indexes Integer >0 Atom1 and Atom2 are bond end
points.

CFG Bond configuration 0 = none (default)
1=up
2 = either
3 =down
TOPO Query property 0 = not specified (default)
1=ring

10-9

CTfile Formats (December 1999)

Table 10-2 Meaning of values in the bond block (Continued)

Field

Meaning

Values

Notes

RXCTR

STBOX

Reacting center status

Stereo box

2 = chain
0 = unmarked (default)
-1 = not a reacting center

1 = generic reacting
center

Additional:

2 =no change

4 = bond made or broken
8 = bond order changes

12 =(4 + 8) bond made or
broken and changes
5=(4+1),9=(8+1),
and

13 =(12 + 1) are also
possible

0 = ignore the
configuration of this
double bond (default)

1 = consider the stereo

configuration of this
double bond

A double bond must be marked
to search double bond
stereochemistry

10-10

The Extended Molfile Format

Link atom line

There is one link atom line for each link atom in the Ctab. A link atom line

has the format:

M V30 LINKNODE minrep maxrep nbonds inatom outatom [inatom outatom...]

Table 10-3 Meaning of values in link lines
Field Meaning Values Notes
minrep Minimum number of group repetitions. 1 For future expansion.
Not currently used.
maxrep Maximum number of group repetitions. Integer >0
nbonds Number of directed bonds defining the nbonds = # of pairs of Number of tuples is
group. inatom-outatom tuples usually two but may be
one for link nodes with
an attachment point.
inatom Atom index of atom in the repeating Integer >0
group.
outatom Atom index of atom bonded to Integer >0

inatom, but outside of repeating
group.

10-11

CTfile Formats (December 1999)

Sgroup block

The Sgroup block contains general Sgroup information and information on
each Sgroup structure as shown in Figure 10-2. For the V2000 version of this
Sgroup structure and connection table, see Figure 2-2.

10-12

The Extended Molfile Format

Figure 10-2 Connection table organization of an Sgroup structure

Polymer
ran
Polymer Header block
GSMACCS-1107129516502D 1 0.00374 0.00000 0 —
Figure 5, J. Chem. Inf. Comput. Sci., Vol 32, No. 3., 1992 = —= Comments line
0 0O 00 999 V3000

V30 BEGIN CTAB Counts line
V30 COUNTS 7 6 3 00
V30 BEGIN ATOM

V30 1 * 2.9463 0.3489 0 0
V30 2 C 1.6126 1.1189 0 0O

V30 3 C 0.2789 0.3489 0 0 CFG=3 Atom block
V30 4 CI 0.2789 -1.1911 0 O

V30 5 C -1.0548 1.119 0 0

V30 6 C -2.3885 0.349 0 0

V30 7 * -3.9246 1.147 0 0O]

V30 END ATOM — 9
V30 BEGIN BOND §
V301112 g
V30 2 12 3 ~
V30 3134 Bond block
V30 415 6

V30 515 3

V30 6 17 6 Blocks not used Rgroup block
V30 END BOND in this Ctab ———— =— 3D block

V30 BEGIN SGROUP
V30 1 SRU 5 ATOMS=(2 5 6) XBONDS=(2 5 6) BRKXYZ=(9 -0.6103 1.2969 0 -0.6103 L |
V30 0.171 0 0 O 0) BRKXYZ=(9 -3.1565 0.185 0 -3.1565 1.311 0 0 0 0) -

V30 CONNECT=HT

V30 2 SRU 6 ATOMS=(3 2 3 4) XBONDS=(2 1 5) BRKXYZ=(9 2.2794 1.2969 0 2.2794 -
V30 0.1709 0 0 0 0) BRKXYZ=(9 -0.1657 0.171 0 -0.1657 1.2969 0 0 0 0) - -
V30 CONNECT=HT

V30 3 COP 7 ATOMS=(7 1 2 3 4 5 6 7) BRKXYZ=(9 3.6382 1.6391 0 3.6382 -
V30 -1.7685 0 0 0 0) BRKXYZ=(9 -4.707 -1.7685 0 -4.707 1.6391 0 0 0 0) - <+
V30 SUBTYPE=RAN
V30 END SGROUP
V30 END CTAB
END

salado.ld dnoibs

T EEEEEEEEEEEEESS S SSEEREEEEEEEEEEEEEDTEETEEE
£ dnoibs z dnoubs T dnoibs

10-13

CTfile Formats (December 1999)

An Sgroup block defines all Sgroups in the molecule, including superatoms.
The format is as follows:

M V30 BEGIN SGROUP

[M V30 DEFAULT [CLASS=class] -]

M V30 index type extindex -

V30 [ATOMS=(natoms atom [atom ...])] -

V30 [XBONDS=(nxbonds xbond [xbond ...1)] -

V30 [CBONDS=(ncbonds cbond [cbond ...1])] -

V30 [PATOMS=(npatoms patom [patom ...1)] -

V30 [SUBTYPE=subtype] [MULT=mult] -

V30 [CONNECT=connect] [PARENT=parent] [COMPNO=compno] -
V30 [XBHEAD=(nxbonds xbond [xbond ...1)] -

V30 [XBCORR=(nxbpairs xbl xb2 [xbl xb2 ...1)] -

V30 [LABEL=label] -

V30 [BRKXYZ=(9 bx1l byl bzl bx2 by2 bz2 bx3 by3 bz3])* -
V30 [ESTATE=estate] [CSTATE=(4 xbond cbvx cbvy cbvz)]* -
V30 [FIELDNAME=fieldname] [FIELDINFO=Fieldinfo] -

V30 [FIELDDISP=Ffielddisp] -

V30 [QUERYTYPE=querytype] [QUERYOP=queryop] -

V30 [FIELDDATA=fielddata] ... -

V30 [CLASS=class] -

V30 [SAP=(3 aidx lvidx id)]* -

V30 [BRKTYP=bracketType] -

=EEEEEEEEEEEEEEEEESEEXTEERZ

M V30 END SGROUP

The DEFAULT field provides a way to specify default values for keyword
options. The same keyword options and values as defined in Table 10-4.

Table 10-4 Meaning of values in the Sgroup block

Field Meaning Values Notes

index Sgroup index integer >0 The actual value of the index does
not matter as long as all indexes
are unique. However, extremely
large numbers used as indexes
can cause the program to fail to
allocate memory for the
correspondence array.

type Sgroup type String. Only first 3 letters are

significant:

SUPeratom
MULtiple

10-14

The Extended Molfile Format

Table 10-4 Meaning of values in the Sgroup block (Continued)

Field Meaning Values Notes
SRU
MONomer
COPolymer
CROsslink
MODification
GRAft
COMponent
MIXture
FORmulation
DATa
ANY
GENeric
extindex External index value Integer => 0: Use 0 to autogenerate a number.
If 0, positive integer assigned This is the V2000 Sgroup label.
ATOMS natoms is the Integer >0
number of atoms
that define the
Sgroup.
atom is the atom Integer >0
index.
XBONDS nxbonds is the Integer >0
number of crossing
bonds.
xbond is the Integer >0
crossing-bond
index.
CBONDS ncbonds is the Integer >0 Only used for Data Sgroups.
number of
containment bonds.
cbond is the Integer >0

containment-bond
index.

10-15

CTfile Formats (December 1999)

Table 10-4 Meaning of values in the Sgroup block (Continued)

Field Meaning Values Notes
PATOMS npatom is the Integer >0 This field is expected to become
number of obsolete and is retained for

paradigmatic
repeating unit
atoms.

patom is the atom
index of an atom in
the paradigmatic
repeating unit for a
multiple group.

SUBTYPE subtype is the String. Only the first 3 letters
Sgroup subtype. are significant:
ALTernate
RANdom
BLOck
MULT multisthe multiple Integer >0
group multiplier.
CONNECT connect is the
connectivity.

String values are as follows:

EU (default)
HH
HT
PARENT parent is the Integer >0
parent Sgroup
index.
COMPNO compno is the Integer >0
component order
number.
XBHEAD nxbonds is the Integer >0
number of crossing
bonds that cross the
“head” bracket.
xbond is the Integer >0
crossing-bond
index.

10-16

compatibility with MACCS-II.
The field is only used for multiple
groups.

The default, if missing, is EU.The
MDL V2000 writer never writes an
EU entry.

If XBHEAD is missing, no bonds
are paired as the head or tail of the
repeating unit.

The Extended Molfile Format

Table 10-4 Meaning of values in the Sgroup block (Continued)

Field Meaning Values Notes
XBCORR nxbpairs 2 x the number of pairs of
crossing-bond correspondence,
that is, the number of values in
list.
xbl - xb2isthe Integer>0
pairs of
crossing-bond
correspondence,
that is, xb1
connects to xb2.
LABEL label is the String For example, superatom name
display label for this
Sgroup.
BRKXYZ bxl - bz3are Angstroms By specifying 3 triples, the format
the double (X,Y,2) allows a 3D display.
display coordinates However, only the first two
in each bracket. (X, Y) coordinates are currently
used. The Z value and last (X, Y)
coordinates are currently ignored
and should be set to zero.
ESTATE estate is the String Only superatoms and multiple
expar?ded display E = expanded superatom or groups (shortcuts) in an expano!ed
state information for multiple group internal state are supported. This
superatoms. field defines whether a superatom
or multiple group is displayed as
expanded or contracted. This field
is expected to become obsolete.
CSTATE xbond is the Integer >0 Display vector information for the
crossing bond of the contracted superatom.
expanded
superatom.
cbvx - cvbzis Angstroms Only present for expanded
the vector to superatoms. One CSTATE entry
contracted per crossing bond.
superatom.
F1ELDNAME Ffieldnameisthe String

name of data field
for Data Sgroup.

10-17

CTfile Formats (December 1999)

Table 10-4 Meaning of values in the Sgroup block (Continued)

Field Meaning Values Notes

FIELDINFO fieldinfoisthe Free-format string Example: In MACCS-II this is:
program-specific “<type> <units/format>"
field information.

FIELDDISP fielddispisthe Free-format string This string is interpreted by V3000
Data Sgroup field as identical to V2000 appendix for
display information. Data Sgroup display (‘M SDD’)

except for the index value.

QUERYTYPE querytypeisthe String
type of query or no
query if missing.

‘"= not a query (default)
‘MQ’ = MACCS-II query
‘1Q" =ISIS query

‘<p>Q’ = <program> query

QUERYOP queryop is the String. Example: “=" or “LIKE” in ISIS
query operator.

ISIS: query operator
MACCS-II: blank or missing

FIELDDATA fielddataisthe Free-format string Only one entry per query, but can

query or field data. be more than one for actual data.
The order of the entries is
important.

CLASS class isthe String Example: PEPTIDE
character string for
superatom class.

SAP aidxistheindex of Integer >0

10-18

attachment point or
potential attachment
point atom.

Ividx is the index
of leaving atom.

Allowed integers are:

The Extended Molfile Format

Table 10-4 Meaning of values in the Sgroup block (Continued)

Field Meaning Values Notes
0 =none or implied H
‘aidx’ = atom index number of
attachment point atom
= atom index number of atom
bonded to ‘aidx’
idis the String (two chars in V2000) There must be multiple entries if
attachment superatom has more than one
identifier. attachment point. The order of the
entries defines the order of the
attachment points. Note that SAP
entries may or may not include the
actual attachment points,
depending on the particular
superatom and its representation
on the ISIS/Desktop.
BRKTYP bracketType is Allowed values for this string This information supports Sgroup

the displayed
bracket style.

are:
BRACKET (default)
PAREN

enhancements on the
ISIS/Desktop.

Correspondence with existing V2000 appendices:

STY =
SST =
SLB =
SCN =
SDS =
SAL =
SBL =
SPA =
SMT =
CRS =
SDI =
SBV =
SDT =
SDD =
SCD =
SED =
SPL =

=EEEEEEEEEEEEEEEEEEERZ

type

SUBTYPE

extindex

CONNECT

ESTATE

ATOMS

XBONDS or CBONDS
PATOMS

LABEL and MULT
XBHEAD , XBCORR
BRKXYZ

CSTATE
FIELDNAME, FIELDINFO, QUERYTYPE
FIELDDISP

(not required)
FI1ELDDATA

PARENT

, QUERYOP

10-19

CTfile Formats (December 1999)

M SNC = COMPNO
M SAP = SAP

M SCL = CLASS
M SBT = BRKTYP
3D block

The 3D block contains 3D information as shown in Figure 10-3. For the V2000
version of this 3D query and its connection table, see Figure 2-3.

10-20

The Extended Molfile Format

Figure 10-3 Connection table organization of a 3D query

Point
3D Query Centroid
Plane —
Benzene ring
Distance
Nitrogen atom ;
v
3D Query
MACCS-1107129516503D 1 1.00000 0.00000 0
Figure 6, J. Chem. Inf. Comput. Sci., Vol 32, No. 3., 1992 I
0 0 O 0 0 999 V3000
M V30 BEGIN CTAB
M V30 COUNTS 8 7070
M V30 BEGIN ATOM
M V30 1 C 1.0252 0.2892 1.1122 0
M V30 2 C -0.4562 0.6578 1.3156 0
M V30 3 C -1.4813 0.3687 0.2033 0
M V30 4 C -1.0252 -0.2892 -1.1122 0
M V30 5 C 0.4562 -0.6578 -1.3156 0O
M V30 6 C 1.4813 -0.3687 -0.2033 0
M V30 7 N 4.1401 -0.1989 1.3456 0
M V30 8 C 4.6453 0.5081 1.7417 O
M V30 END ATOM
M V30 BEGIN BOND
M V301112
M V30 2223
M V30 3134
M V30 4245
M V305156
M V30 6261
M V307178
M V30 END BOND
M V30 BEGIN OBJ3D
M V30 1 -7 6 ™" 0 0 BASIS=(3 6 4 2) Blocks not used
M V30 2 -5 13 *” 0 0 BASIS=(6 1 2 3 4 5 6) in this Ctab
M V30 3 -8 7 ”” 0 0 BASIS=(2 03D.1 03D.2)
M V30 4 -3 6 ”” -2 0 BASIS=(2 03D.1 03D.3) PNTDIR=1
M V30 5 -16 12 7 1.5 0 BASIS=(1 03D.4) UNCONNOK=1
M V30 6 -12 10 ”” 75 105 BASIS=(3 03D.4 03D.1 7)
M V30 7 -9 3 ”” 4.4 5.7 BASIS=(2 7 03D.1)
M V30 END OBJ3D
M V30 END CTAB
M END

Normal ﬁ‘,'

Exclusion sphere ————

_|

Header block

— Comments line

Counts line

Atom block

20/q qe1D

Bond block

Sgroup block
Rgroup block

3D objects
block

10-21

CTfile Formats (December 1999)

A 3D block specifies information for all 3D objects in the connection table. It
must follow the atom and bond blocks. As in V2000 molfiles, there can be
only one fixed-atom constraint.

The format of the 3D block is as follows:

V30 BEGIN OBJ3D

V30 index typ color name valuel value2 -

V30 BASIS=(nbvals bval [bval ...]) -

V30 [ALLOW=(nvals val [val .._.])] [PNTDIR=val] [ANGDIR=val] -
V30 [UNCONNOK=val] [DATA=strval] -

V30 [COMMENT=comment]

===

M V30 END OBJ3D

Table 10-5 Meaning of values in the 3D block

Field Meaning Values Notes

index 3D object index Integer >0 The actual value of the index
does not matter as long as
all indexes are unique.
However, extremely large
numbers used as indexes
can cause the program to fail
to allocate memory for the
correspondence array.

typ Object type Integer < O for geometric This format is the same as
constraints for data constraints ~ V2000.

Integer > 0 are field IDs

color Color value Integer >0

name Object name or, for String
data query, the field
name.

valuel Distance, radius, Floating point, valuel = 0 if
deviation, or minimum constraint has no floating values
value.

value2 Maximum value for Floating point, value2 = 0 if not a
range constraints. range constraint

BASIS nbvals is the Integer >0
number of objects in
basis.

10-22

The Extended Molfile Format

Table 10-5 Meaning of values in the 3D block (Continued)

Field Meaning Values Notes
bval is the atom Integer or For objects where order is
number or 3D object 03D.integer important, for example, in an
index. angle constructed from three
points, the order must be the
same as in V2000 molfiles.
ALLOW nvals is the number Integer >0
of atoms allowed in an
exclusion sphere.
val is the atom
number. Integer > 0
PNTDIR 0 = point has no direction
1 = point has direction
ANGDIR 0 = dihedral angle has no MACCS-II uses ‘Chiral’.
direction
1 = dihedral angle has direction
UNCONNOK 0 = unconnected atoms are not
OK
1 = unconnected atoms are OK
DATA strval is the data String
query string
COMMENT string comment String. Normally uses the Same as V2000 molfile

MACCS-II DASP, DISP, and BOX

values

The Extended Rgroup Query Molfile

A single molecule or Rgroup molecule connection table. The header is
contained in the normal header location, that is, in the first three lines of the
file. The body of the new molecule is contained in new appendixes,

organized as follows:

A molecule block consists of a main Ctab, plus optionally one or more

Rgroup definitions.

ctab-block
[rgroup-block]*

10-23

CTfile Formats (December 1999)

Rgroup block

The Rgroup file shown in Figure 10-4 corresponds to the following Rgroup
query. For the V2000 version of the Rgroup query and its connection table,
see Figure 4-1.

Figure 10-4 Connection table organization of an Rgroup query (Continued on next page)

R2

N

10-24

R1

IF R1 THEN R2

*

/RZ R1 = \ R1>0
R2 = \ \ R2=0

ZTEEZTEZTEZTEZTEZT=ZT=ZTZZ=ZTZTEZTES=ZTEZTES=ZTEZTEZTZ=ZTEZTEZTEZTEZTEZTEZTZTZTZTZTZZ;Z;Z Tz =

0 O
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
V30
END

The Extended Molfile Format

GSMACCS-1107139508292D 1 0.00353 0.00000

0 0 0 999 V3000
BEGIN CTAB

COUNTS 9 9 0 0 0

BEGIN ATOM

C 1.3337 0.77 0 O

01.54 00

-1.3337 0.77 0 0

-1.3337 -0.77 0 O

0-1.5400

1.3337 -0.77 0 0

R# 0 3.08 0 0 RGROUPS=(1 1)

R# 2.6674 1.54 0 0 RGROUPS=(1 2)
R# -2.6674 1.54 0 0 RGROUPS=(1 2)
END ATOM

BEGIN BOND

© 0O~NOOODMWNLE
OO0 000

=
[y

© 0O ~NOOUhAWNEPRE
P RPFPNENEDN
WNPFPOOUOAWN
NoOoRrOoOObMWN

9

BOND

END CTAB

BEGIN RGROUP 1

RLOGIC 2 O ™~

BEGIN CTAB

COUNTS1 0000
BEGIN ATOM

1 C 12.21 14.3903 0 O ATTCHPT=1
END ATOM

END CTAB

END RGROUP

BEGIN RGROUP 2

RLOGIC 0 O O

BEGIN CTAB

COUNTS 21000
BEGIN ATOM

1 C -1.4969 0.0508 0 O ATTCHPT=1
2 0 0.0431 0.0508 0 O
END ATOM

BEGIN BOND

1212

END BOND

END CTAB

BEGIN CTAB

COUNTS1 0000
BEGIN ATOM

1 N 12.21 14.3903 0 O ATTCHPT=1
END ATOM

END CTAB

END RGROUP

m
=
[w)

LIl

]

j Counts line

Atom
block
of root

Bond
block
of root

Ctab for
Rgroup 1
Member 1

Ctab for
Rgroup 2
Member 1

Ctab for
Rgroup 2
Member 2

Header block

Ctab for
Rgroup
root

Block for
Rgroup R1

Block for
Rgroup R2

10-25

CTfile Formats (December 1999)

An Rgroup block defines one Rgroup. Each Ctab block specifies one member.

M V30 BEGIN RGROUP rgroup-number
[rgroup-logic-line]

ctab-block

[ctab-block]*

M V30 END RGROUP

Table 10-6 Meaning of values in the Rgroup block

Field Meaning Values Notes
rgroup-number Index of this rgroup Integer >0

Rgroup logic lines

There is zero or one Rgroup logic line for each Rgroup in the molecule. If
present, the Rgroup logic line specifies if-then logic between Rgroups, the
convention about unfilled valence sites, and the Rgroup occurrence
information. Its format is:

M V30 RLOGIC thenR RestH Occur

Table 10-7 Meaning of values in Rgroup logic line

Field Meaning Values Notes
thenR Number of a “then” Rgroup 0 = none (default)
RestH Attachment(s) at Rgroup 0 = off, that is, any molecule

position fragment at any unsatisfied Rgroup

location (default)
1 = only hydrogen or a member of
Rgroup is allowed

Occur String specifying number String Similar to MACCS-II and

(range) of Rgroup occurrence 0’ = default ISIS: [N[[NL.---111]
sites that need to be satisfied.

10-26

DWG file format

An attempt to specify the DWG (R12) file format using the BFF grammar for
binary files.

Acknowledgements

I would like to thank Reini Urban <rurban@sbox.tu-graz.ac.at> for his
contributions.

Definition of the elementary elements

typedef word word :=
byte : bl, byte : b2
return (word)f | ((word)s << 8).
typedef longword longp :=
byte : bl, byte : b2, byte : b3, byte : b4
return (longword)bl | ((longword)b2 << 8)
| ((longword)b3 << 16) | ((longword)bd << 24).
typedef longword longword :=
byte : bl, byte : b2, byte : b3, byte : b4
return (longword)bl | ((longword)b2 << 8)
| ((longword)b3 << 16) | ((longword)b4 << 24).

Definition of the whole file

root dwg file :=
[begin : end](
char[12] : version,
byte, word, word, word, byte,
longp : p_entities, longp : p_entend,
longp : p_blocksec, byte[4], 1longp : p bsend, byte[4],

tablepos : block_table,

tablepos : layer_table,

tablepos : style_table,

tablepos : ltype_table,

tablepos : view_table,

header, [cur : Ox3EF]byte%*,

tablepos : ucs_table, [cur : 0x500]byte*,
tablepos : vport_table, byte[8],

tablepos : appid_table, byte[6],

tablepos : dimstyle_ table, [cur : O0x69F]byte*,

tablepos : pl3_table, bytes[38],
[p_entities : p entend]entities : ents, byte[19],
[block_table.start :]blocks : block_ table,

[layer_ table.start :]Jlayers : layer table,
[style table.start :]styles : style table,
[ltype table.start :]Jltypes : ltype table,
[view_table.start :]Jtable : view_table,
[ucs_table.start :]Jtable : ucs_table,

[vport_table.start : vport_table.end]table : vport_table,
[appid table.start : Jappids : appid table,
[dimstyle_table.start :]table : dimstyle_table,
[pl3_table.start :]Jtable : pl3_table,
[p_blocksec : p bsend]entities : blocks, bytes[36],
longp = p_entities, longp = p_entend,

longp = blocksec, longp = bsend,

bytes[12],

bytes[6],

longp = block_table.start, bytes[6],

longp = layer table.start, bytes[6],

longp = style_table.start, bytes[6],

longp = ltype table.start, bytes[6]

longp = view_table.start, bytes[6],

longp = ucs_table.start, bytes[6],

longp = vport_table.start, bytes[6],

longp = appid_table.start, bytes[6],

longp = dimstyle table.start, bytes[6],

longp = pl3_table.start, bytes[6],

longp bytes%*,

).

A table position

tablepos :=
word : size,
long : nr,
long : start,

The header

header :=
word,
point (TRUE) : inbase,
point (TRUE) : extmin,
point (TRUE) : extmax,
point (FALSE) limmin,
point (FALSE) limmax,
double[4],
byte[2],
double[2],
byte[56],
double[3],
byte[18],
double .

The block table

blocks :=
([sizel(
byte : flag,
char[32] : name,
word : used,
byte, word, byte, word,
check_2
)
)[nr] : blocks_info,
check_32.

check_2 := byte[2].
check_32 := byte[32].

The layer table

layers :=
([sizel(
byte : flag,
char[32] : name,

word : used,
word : color,
word : style,
check_2
)
)[nr] : layer_ info,
check_32.

The style table

styles :=

([size](
byte : flag,
char[32] : name,
word, double[3], byte, double,
check_2

)
)y[nr] : style_ info,
check_32.

The line-type table

ltypes :=
([size](
byte : flag,
char[32] : name,

word, char([48], byte,
byte, double[13],

char[128],

check_2

)
)y[nr] : ltype_info,
check_32 .

The application identifier table

appids :=
([size](
byte : flag,
char[32] : name,
word,
check_2
)
)[nr] : appid_info,
check_32 .

The other tables

table :=

([size](
byte : flag,
[size - 3]bytex,
check_2

)
)[nr],
check_32 .

The entities

(Experimental)
entities :=
(byte : kind,
byte : flag,
word : length,
[length - 4](

word : layer,

word : opts,

if (flag & 1) then byte : color else color = 0 fi,

if (flag & 0x40) then byte : extra else extra = 0 fi,
if (extra & 2) then xdata fi,

if (flag & 2) then word : type fi,

if (flag & 4 && kind > 2 && kind != 22) then double :
if (flag & 8) then double : th fi,

if (flag & 0x20) then handle fi,

if (extra & 4) then word : paper fi,

switch (kind)

case 1l: /* LINE */

point(!(flag & 4)) : 110,
point(!(flag & 4)) : 111,
if (opts & 1) then point(TRUE) : 1210 fi,

if (opts & 2) then double : 138 fi,
case 2: /* POINT */
point(!(flag & 4)) : 110,
if (opts & 1) then point(TRUE) : 1210 fi,
if (opts & 2) then double : 138 fi,
case 3: /* CIRCLE */

point (FALSE) : 110,
double : 140,
if (opts & 1) then point(TRUE) : 1210 fi,

if (opts & 2) then double : 138 fi,
case 4: /* SHAPE */

point (FALSE) : 110,
word : 12,
if (opts & 1) then point(TRUE) : 1210 fi,

if (opts & 2) then double : 138 fi,
case 7: /* TEXT */

point (FALSE) : 110,

double : 140,

string : 11,

if (opts & 1) then double

if (opts & 2) then double

150 fi,
141 fi,

z fi,

if (opts & 4) then double : 151 fi, /*2%/
if (opts & 8) then byte : 17 fi,

if (opts & 0x10) then byte : 171 fi,

if (opts & 0x20) then byte : 172 fi,

if (opts & 0x40) then point(FALSE) : 111 fi,

if (opts & 0x100) then byte : 173 fi,

case 8: /* ARC */
point (FALSE) : 110,
double : 140,
double : 150,
double : 151,
if (opts & 1) then point(TRUE) : 1210 fi,
if (opts & 2) then double : 138 fi,

case 9: /* TRACE */
point (FALSE) : 110,
point (FALSE) : 111,
point (FALSE) : 112,
point (FALSE) : 113,

if (opts & 1) then point(TRUE) : 1210 fi,
if (opts & 2) then double : 138 fi,

case 11: /* SOLID */
point (FALSE) : 111,

point (FALSE) : 112,
point (FALSE) : 113,
point (FALSE) : 114,

if (opts & 1) then point(TRUE) : 1210 fi,
if (opts & 2) then double : 138 fi

case 12: /* BLOCK */
point (FALSE) : 110, /*x2%/
string : 11, /* if (opts & 1) then ? */

if (opts & 2) then string : 13 fi
case 13: /* ENDBLK */
case 1l4: /* INSERT */

word : 11,

point (FALSE) : 110,

if (opts & 1) then double : 141 fi,

if (opts & 2) then double : 142 fi,

if (opts & 4) then double : 143 fi,

if (opts & 8) then double : 150 fi,

if (opts & 0x10) then byte : 170 fi, /x2%/

if (opts & 0x20) then byte : 171 fi, /x2%/

if (opts & 0x40) then double : 144 fi, /*2%/

if (opts & 0x80) then double : 145 fi /*2%/
case 15: /* ATTDEF */

point (FALSE) : 110,

double : 140,

string : 11,

string : 13,

string : 12,

byte : 170,

if (opts & 1) then byte : 173 fi, /x2%/

if (opts & 2) then double : 150 fi, /x2%/

if (opts & 4) then double : 141 fi,

if (opts & 8) then double : 142 fi,

if (opts & 0x10) then byte : 17 fi,

if (opts & 0x20) then byte : 171 fi,

if (opts & 0x40) then byte : 172 fi,

if (opts & 0x80) then point(FALSE) 111 fi, /*2%/

&

if (opts 0x100) then point(TRUE) : 1210 fi,

if (opts & 0x200) then double : 138 fi /*x2%/
case 16: /* ATTRIB */

point (FALSE) : 110,

double : 140,

string : 11,

string : 12,

byte : 170,

if (opts & 1) then byte : 173 fi, /*2%/
if (opts & 2) then double : 150 fi, /*2%/
if (opts & 4) then double : 141 fi,

if (opts & 8) then double : 142 fi,

if (opts & 0x10) then byte : 17 fi,

if (opts & 0x20) then byte : 171 fi,

if (opts & 0x40) then byte : 172 fi,

if (opts & 0x80) then point(FALSE) : 111 fi, /x2%/

if (opts & 0x100) then point(TRUE) 1210 fi,

if (opts & 0x200) then double : 138 fi /*x2%/
case 17: /* S/BEND */

long
case 19: /* PLINE */

if (opts & 1) then byte : 170 fi,

if (opts & 2) then double : 140 fi, /*2%/

if (opts & 4) then byte : 171 fi, /*x2%/

if (opts & 8) then byte : 172 fi, /*x2%/

if (opts & 0x10) then byte : 173 fi, /*2%/

if (opts & 0x20) then byte : 174 fi, /x2%/

if (opts & 0x40) then byte : 175 fi /*2%/
case 20: /* VERTEX */

point (FALSE) : 110,

if (opts & 1) then double : 140 fi, /*2%/

if (opts & 2) then double : 141 fi, /*x2%/

if (opts & 4) then byte : 170 fi, /*2%/

if (opts & 8) then double : 150 fi /*2%/
case 22: /* 3DFACE */

point(!(flag & 4)) : 110,

point(!(flag & 4)) : 111,

point(!(flag & 4)) : 112,

point(!(flag & 4)) : 113

case 23: /* DIM */
word : 11,
point (TRUE) : 110,
point (FALSE) : 111, /x2%/
if (opts & 2) then byte : 170 fi,

if (opts & 1) then point(TRUE) : 112 fi, /x2%/
if (opts & 4) then string : 11 fi,

if (opts & 8) then point(TRUE) : 113 fi,

if (opts & 0x10) then point(TRUE) : 114 fi,

if (opts & 0x20) then point(TRUE) : 115 fi,

if (opts & 0x40) then point(TRUE) : 116 fi,

if (opts & 0x80) then double : 140 fi,

if (opts & 0x100) then double : 150 fi,

if (opts & 0x200) then double : 151 fi,

if (opts & 0x400) then double : 152 fi,

if (opts & 0x800) then double
case 24: /* VPORT */

point (TRUE) : 110,

double : 140,

double : 141,

word : 168
endswitch
check_2

153 fi

)

)* : entities.
Still need to define xdata and handle. (to be continued...)

Last updated: Tuesday, 09-Jan-96 20:21:36 MET

Osél-l-()ffice.org

Source Project
OpenOffice.org's Documentation of the

Microsoft® Excel File Format

Excel Versions 2, 3, 4, 5, 95, 97, 2000, XP

Author Daniel Rentz <daniel.rentz@sun.com>

Source PDF: http://sc.openoffice.org/excelfileformat.pdf
XML: http://sc.openoffice.org/excelfileformat.sxw

Project started 2001-Jun-29

Last change 2001-Nov-24

Contents

INTYOAUCTION oottt ettt sttt astensanas 4
1.1 File Format Versions 4
1.2 Structure of a Worksheet File (BIFF2-BIFF4) 4
1.3 Structure of a Workbook File (BIFF5-BIFF8) 4
1.4 Structure of a Record 5
1.5 Byte Order 5
BaSiC SUDSTIUCTULIES ...ttt ettt senes 6
2.1 Byte Strings (BIFF2-BIFF7) 6
2.2 Unicode Strings (BIFF8) 6
2.3 RK Values 7
2.4 Error Codes 8
2.5 List of Cached Values 8
2.6 Encoded Document Names 9
2.7 Line Styles for Cell Borders (BIFF3-BIFF8) 10
2.8 Patterns for Cell Background Area (BIFF3-BIFF8) 10
2.9 Cell Attributes (BIFF2) 11
2103’0 019 10 1 = 1-J OO 12
3.1 Common Structure 12
3.2 Operators 13
3.3 Reference Classes 13
3.4 Encoding of Cell References in Tokens 14
3.5 Token Overview 14
3.6 Unary Operator Tokens 16
3.7 Binary Operator Tokens 16
3.8 Function Operator Tokens 18
3.9 Constant Operand Tokens 19
3.10 Operand Tokens 20
Worksheet/WOrKbOOK StYUCTULIE ...ttt 24
4.1 Worksheet Stream (BIFF2-BIFF4) 24
4.2 Workbook Stream (BIFF4) 24
4.3 Workbook Stream (BIFF5-BIFF8) 25
4.4 Shared String Table (BIFF8) 26
4.5 Internal and External References 26
4.6 Array Formulas, Shared Formulas 31
4.7 Multiple Operations (Table Operations) 31
4.8 AutoFilter 31
4.9 Scenarios 31
4.10 Web Queries (BIFF8) 31
Worksheet/WorkbooK RECOTAS ... 32
5.1 Overview, Ordered by Record IDs 32
5.2 Overview, Ordered by Record Names 34
5.3 BLANK 35
5.4 BOF - Begin of File 35
5.5 BOOLERR 36
5.6 CONTINUE 37
5.7 CRN 37
5.8 DCONREF - Data Consolidation Reference 38

5.9 DIMENSIONS 38

O 03 O

5.10 EOF - End of File 38

5.11 EXTERNCOUNT 38
5.12 EXTERNNAME 38
5.13 EXTERNSHEET 40
5.14 EXTSST - Extended SST 41
5.15 FONT 41
5.16 FORMAT 42
5.17 FORMULA 42
5.18 HLINK - Hyperlink 44
519 INTEGER 47
5.20 IXFE - Index to XF 47
5.21 LABEL 47
5.22 LABELSST 47
5.23 MULBLANK - Multiple BLANK 48
5.24 MULRK - Multiple RK 48
5.25 NAME 49
5.26 NUMBER 51
5.27 PALETTE 52
5.28 PASSWORD 52
5.29 RK 52
5.30 SCREENTIP 53
5.31 SHEETHDR 53
5.32 SHEETSOFFSET 54
5.33 SST - Shared String Table 54
5.34 STRING 54
5.35 SUPBOOK - External Workbook 54
5.36 XCT - CRN Count 56
5.37 XF - Extended Format 56
Drawing Objects, ESCher Layer ... 61
(@0 1= - OTTOOORTRO 62
PIVOITADIES ...ttt sttt 63
Change TraCKINGoooviiirecere et 64

1 Introduction

1 Introduction

1.1 File Format Versions

The Excel file format is named BIFF (Binary Interchange File Format). The following table shows which
Excel version writes which file format.

Excel version BIFF version Document type File format
Excel 2 BIFF2 Worksheet Stream
Excel 3 BIFF3 Worksheet Stream
Excel 4 BIFF4 Worksheet or workbook Stream

Excel 5.0 BIFF5 Workbook OLE2 storage
Excel 7.0 (Excel 95) BIFF7 Workbook OLE2 storage
Excel 97, 2000, XP BIFF8 Workbook OLE2 storage

The oldest file format BIFF2 has of course the most restrictions. From BIFF4 on it is possible to store a
bundle of sheets, called a workbook. The current format BIFF8 contains major changes towards older BIFF
versions, for instance the handling of Unicode strings.

1.2 Structure of a Worksheet File (BIFF2-BIFF4)

Files stored in the BIFF versions BIFF2 to BIFF4 contain all records for a sheet or a BIFF4 workbook in one
simple stream. The records are arranged sequential, they are never embedded in other records.

1.3 Structure of a Workbook File (BIFF5-BIFF8)

An Excel workbook with several sheets (from BIFF5 on) is stored as an OLE2 compound file. It contains
several streams for different types of data. The following table lists names of possible streams.

Stream name Contents

Book BIFF5/BIFF7 workbook stream (-4.3)
Workbook BIFF8 workbook stream (=4.3)
<05x>SummaryInformation Document settings
<055>DocumentSummaryInformation Document settings

User Names User names in shared workbooks (-9)
Revision Log Change tracking log stream (-9)

The names of the streams SummaryInformation and DocumentSummarylnformation contain a leading
byte with the value 05,.

1.3 Structure of a Workbook File (BIFF5-BIFF8)

It is possible to create substorages like subdirectories in a file system, for instance for the pivot table
streams. These storages contain substreams itself.

Storage name Contents

LNKXXXXXXXX Storage for a linked OLE object (-6)

MBDXXXXXXXX Storage for an embedded OLE object (-+6)

_SX_DB_CUR Pivot cache storage. The streams contain cached values for one or more
PivotTables (-8).

_VBA_PROJECT_CUR Visual BASIC project storage

In all streams the records are arranged sequential, they are never embedded in other records. Exception
in BIFF8: The Escher object stream is splitted and embedded in several MSODRAWING records (=6).

1.4 Structure of a Record

In an Excel data stream the data is divided into several records. Each record contains specific data for the
various features of Excel. The common structure of a record is described in the following table.

Offset Size Contents

o] 2 Identifier
2 2 Size of the following data (sz) } Record header
4 8z Data

The maximum size of the record data is limited. If the size of the record data exceeds the given limits,
one or more CONTINUE (-5.6) records will be added. Inside of a CONTINUE record the data of the
previous record continues as usual.

In the following descriptions only the record data without the headers is shown. All offsets are relative
to the beginning of the record data and not to the entire record. The contents of most of the records
differ from version to version. This will be described in separate tables. A few older records are replaced
in newer BIFF versions. Excel does not write these old records anymore, but can still read them.

1.5 Byte Order

All data items containing more than one byte are stored using the Little-Endian method. That means the
least significant byte is stored first and the most significant byte last. This is valid for all data types like
16-bit-integers, 32-bit-integers, floating-point values and Unicode characters. For instance the 16-bit-
integer value 1234, is converted into the byte sequence 34, 12,

2 Basic Substructures

2 Basic Substructures

This chapter contains information about substructures which are part of several records, for instance
strings or error codes.

2.1 Byte Strings (BIFF2-BIFF7)

All Excel file formats up to BIFF7 contain simple byte strings. The byte string consists of the length of the
string followed by the character array. The length is stored either as 8-bit-integer or as 16-bit-integer,
depending on the current record. The string is not zero-terminated.

Offset Size Contents
o 1o0r2 Length of the string (character count) (1n)
1o0r2 in Character array (8-bit-characters)

2.2 Unicode Strings (BIFF8)

From BIFF8 on, strings are stored in a new Unicode format which allows reading and writing 16-bit-
characters. The following tables describe the standard format, but in many records the strings differ from
this format. This will be mentioned separately. It is possible (but not required) to store Rich-Text
formatting information and extended information for Far-East inside of an Unicode string. This results
in four different ways to store a string. The string is not zero-terminated.

2.2.1 Contents of an Unicode string
The string consists of the character count (as usual an 8-bit-integer or a 16-bit-integer), option flags, the

character array and optional formatting information. If the string is empty, sometimes the option flags
field will not occur. This is mentioned at the respective place.

* Unicode string without additional information

Offset Size Contents
o] 1o0r2 Length of the string (character count) (1n)
10r2 1 Option flags (see below): 004 or 01,
20r3 lnor21ln Character array (8-bit-characters or 16-bit-characters)

* Unicode string with Rich-Text formatting information

Offset Size Contents
o 10r 2 Length of the string (character count) (1n)

10r2 1 Option flags (see below): 08, or 09y

2 0r3 2 Number of Rich-Text formatting runs (rt)

40r5 lnor21ln Character array (8-bit-characters or 16-bit-characters)

var. 4'rt List of rt formatting runs. Each run contains two 16-bit indexes:
Offset Size Contents

o 2 First formatted character (zero-based)
2 2 Index to FONT record (=5.15)

2.2 Unicode Strings (BIFF8)

* Unicode string with Far-East information

Offset Size Contents
o 10r2 Length of the string (character count) (1n)
10r2 1 Option flags (see below): 04, or 054
2 0r 3 4 Far-East data size (sz)
6or7 lnor21ln Character array (8-bit-characters or 16-bit-characters)
var. sz Unknown extended data about phonetic, keyboard, etc.

* Unicode string with Rich-Text and Far-East information

Offset Size Contents
0] 10r2 Length of the string (character count) (1n)
10r2 1 Option flags (see below): 0Cy or 0Dy
2 0r 3 2 Number of Rich-Text formatting runs (rt)
40rs5 4 Far-East data size (sz)
8or9 lnor21ln Character array (8-bit-characters or 16-bit-characters)
var 4rt List of rt formatting runs. See above for details.
var. sz Unknown extended data about phonetic, keyboard, etc.

2.2.2 Option flags

Bit Mask Contents
o] 01y 0 = 8-bit-characters 1 = 16-bit-characters
2 04y 0 = Contains no Far-East info 1 = Contains Far-East info
3 08y 0 = Contains no Rich-Text info 1 = Contains Rich-Text info

2.3 RK Values

An RK value is an encoded integer or floating-point value. RK values have a size of 4 bytes and are used
to decrease file size for floating-point values.

Structure of an RK value (32-bit-value):

Bit Mask Contents
o 000000014 0 = Value not changed 1 = Value multiplied by 100
1 000000024 o = IEEE floating-point value 1 = Integer value

31-2 FFFFFFFCy Encoded value

If bit 1 is set to o, the encoded value represents the 30 most significant bits of an IEEE floating-point
value. The 34 least significant bits must be set to zero. If bit 1 is set to 1, the encoded value represents a
signed 30-bit-integer value.

If bit o is set to 1, the decoded value must be divided by 100 to get the final result.

Examples:

RK value Decoded value Result
3FF000004 Floating-point = 1 1
3FF00001y Floating-point = 1 0.01
004B5646y Integer = 1234321 1234321
004B564 7y Integer = 1234321 12343.21

2 Basic Substructures

2.4 Error Codes

If the calculation of a formula results in an error or any other action fails, Excel sets a specific error code.
These error codes are used for instance in cell records and formulas.

Error code Error value Description
00x #NULL! Intersection of two cell ranges is empty
074 #DIV/o! Division by zero
0Fx #VALUE! Wrong type of operand
17y #REF! Illegal or deleted cell reference
1Dx #NAME? Wrong function or range name
24y #NUM! Value range overflow
2Ry #N/A! Argument or function not available

2.5 List of Cached Values

The records CRN (-5.7) and EXTERNNAME (-=5.12) and the formula token ptgArray (array constant,
-3.10.1) require a list of constant values (floating-point values, strings, boolean values or error codes).
These values are stored as a simple list. The number of values is stored before in the respective record or
token.

* IEEE floating-point value

Offset Size Contents
o] 1 014 (identifier for a floating-point constant)
1 8 IEEE floating-point value

* String value
A string value, BIFF2-BIFF7:

Offset Size Contents
o] 1 02y (identifier for a string constant)
1 var. Byte string, 8-bit string length (»2.1)
A string value, BIFF8:
Offset Size Contents
o] 1 02y (identifier for a string constant)
1 var. Unicode string, 16-bit string length, option flags occur always (-2.2)

* Boolean value

Offset Size Contents
o 1 04, (identifier for a boolean constant)
1 1 0 = FALSE, 1 = TRUE
2 7 Not used

» Error value

Offset Size Contents
o] 1 10y (identifier for an error constant)
1 1 Error code (»2.4)
2 7 Not used

2.6 Encoded Document Names

2.6 Encoded Document Names

2.6.1 Encoded file names

The intention of encoding file names is to make them more platform independent. Encoded file names
occur in the records EXTERNSHEET (BIFF2-BIFF7, -+5.13) or SUPBOOK (BIFF8, -+5.35) and DCONREF (-5.8).

The first character of the file name is used to determine the type of encoding. In Unicode strings (BIFF8)
this could be a 16-bit-value.

First character Meaning

00y Empty sheet name (nothing will follow)

01y Encoded file name

02y External reference to the own document (nothing will follow)

03y External reference to a sheet in the own document (BIFF5/BIFF7)
others Not encoded. This is the first character of the file name.

Inside of the encoded file name there can occur several control characters.

Control character Meaning

01y An MS-DOS drive letter will follow or ,@“ for a local network path
02y Start path name on same drive as own document
03y End of subdirectory name
04y Start path name in parent directory of own document (may occur repeatedly)
06y Start path name in startup directory of Excel
09 Sheet in the same workbook (BIFF4)
Example: Own document is saved as ,,C:\path\own.xls".
Formula Encoded filename
=own.xls!Al <02y>
=Sheet2!Al <014><09x>Sheet2 (BIFF4 workbook)
=Sheet2!Al <03y>Sheet2 (BIFF5/BIFF7)
=[ext.x1ls] Sheetl!Al <01y>[ext.xls]Sheet1
='sub\ [ext.x1s] 'Sheetl!Al <01z>sub<03;>[ext.xls]Sheet1
='\ [ext.x1ls] 'Sheetl!Al <01y><02y>[ext.xls]Sheet1
=’\sub\ [ext .x1s]’Sheetl!Al <01y><02x>sub<03,>[ext.xls|Sheet1
=’ \sub\sub2\ [ext.x1s] 'Sheetl!Al <01,><02;>sub<03,>sub2<03,>[ext.xls|]Sheet1
='D:\sub\ [ext .xls] ' Sheetl!Al <01;><01,>Dsub<03,>[ext.xls]Sheet1
=’ ..\sub\ [ext.x1s] 'Sheetl!Al <01y><04,>sub<03,>[ext.xls]Sheet1

='\\pc\sub\ [ext .x1s] 'Sheet1!Al <01,><01,>@pc<03;>sub<03;>[ext.xls]Sheet1

2.6.2 Encoded document names for DDE and OLE object links

A DDE link contains the name of the server application and the name of a document. An OLE object link
contains a class name and a document name. In both cases the names are stored in one string, separated
by the control character 03,.

Example: A document contains a DDE link to the SO/OOo Calc document ,example.sxc“ and an OLE
object link to the bitmap file ,example.bmp”.

Link Encoded document name
DDE soffice<03,>example.sxc
OLE object Package<03,>example.bmp

2 Basic Substructures

2.7 Line Styles for Cell Borders (BIFF3-BIFF8)

These line styles are used to define cell borders. The styles 08, to 0Dy are available in BIFF8 only.

Index Style Sample Index Style Sample

00x Noline The following for BIFF8 only:

01y Thin S 08y Mediumdashed @ == | —m=m————-—
02; Medium ———— 09: Thin dash-dotted @ —-—-—-—-—-—
03x Dashed ----—----- 02; Medium dash-dotted @ = = = =r=mimi=mue
04y Dotted — --------e-oeeeeoee- 0B; Thin dash-dot-dotted s -
05; Thick —— 0Cs Medium dash-dot-dotted ———r -
06s Double —_— 0D: Slanted medium dash-dotted @~ =r=mimimam
07y Hair = e,

2.8 Patterns for Cell Background Area (BIFF3-BIFF8)

From BIFF3 on, the cell background area may contain a pattern. Foreground and background colors of
the pattern are defined separately. In the following table black is used as foreground color and white as
background color.

Index Pattern Sample Index Pattern Sample
004 No background
01y im [] 0Ay e |
02y oo 0By m =
034 2 0Cq B4
044 = 0Dy = NN
05x = OEx = i
06 &l OF e HEE
07 e NN 104 = :
08y & Y 11, s
09 P 12, [

10

2.9 Cell Attributes (BIFF2)

2.9 Cell Attributes (BIFF2)

All cell records in BIFF2 contain a cell attribute field with a size of 3 bytes. They contain an index to an
XF record (-5.37) and some repeated contents of the referenced XF record. The XF index field has a size
of only 6 bits, so the index range is 0-63. If an index >62 is used, the XF index field always contains the
vaue 63, and an IXFE record (=5.20) occurs in front of the cell record. It contains the correct index of the

XF record.
Cell attributes field (3 bytes), BIFF2:
Offset Size Contents
o] 1 Cell protection and XF index:
Bit Mask Contents
50 3Fx Index to XF record (-5.37). The value 3F; (63)
indicates a preceding IXFE record (=5.20).
6 40y 1 = Cell is locked
7 80y 1 = Formula is hidden
1 1 Indexes to FORMAT and FONT records:
Bit Mask Contents
5-0 3Fy Index to FORMAT record (-5.16)
7-6 COy Index to FONT record (=5.15)
2 1 Cell style:
Bit Mask Contents
2-0 07y XF_HOR_ALIGN - Horizontal alignment (-=5.37.1)
3 08y 1 = Cell has left black border
4 104 1 = Cell has right black border
5 20y 1 = Cell has top black border
6 40y 1 = Cell has bottom black border
7 80y 1 = Cell has shaded background

11

3 Formulas

3 Formulas

3.1 Common Structure

Formulas are stored as part of a record, for instance inside of a FORMULA record or a NAME record. The
common format of a formula is as follows:

Formula in BIFF2:

Offset Size Contents
o] 1 Size of the following formula data (RPN token array) (sz)
1 sz Formula data (RPN token array)
Formula in BIFF3-BIFFS:
Offset Size Contents
o 2 Size of the following formula data (sz)
2 8z Formula data (RPN token array)

The contents of a formula are stored in the Reverse-Polish Notation (RPN). This means, first occur all
operands of an operation, followed by the respective operator. The operands and operators are called
tokens. For instance the simple term 1+2 consists of 3 tokens. Written in RPN the formula is converted to
the token list ,1% ,2° ,+“ During parsing such an expression operands are pushed onto a stack. An
operator pops the needed number of operands from stack, performs the operation and pushes the result
back onto the stack.

Other examples for RPN token arrays:
Formula Token array Parsing result
2:4+5 2,4, , 5, +° The ,-“ pops 4 and 2 and pushes 8, the ,+“ pops 5 and 8 and pushes 40.
That is the result.

The ,-“ pops 5 and 4 and pushes 20, the ,+“ pops 20 and 2 and pushes
22. That is the result.

2+4-5 2,4,5 v,

A token can be a simple integer or floating point value, a string constant, a cell reference or cell range
reference or an operator. A token is stored as follows:

Offset Size Contents
o} 1 Token identifier
[1] var. (optional) Additional data for the token
Example of the formula for the term 1+2:
Offset Size Data Name Comment
2 0007y 8z Size of the following formula data
2 1 1E tgint
: ptein } Integer value token
3 2 0001y
1 1E tgint
> : ptg } Integer value token
6 2 00024
8 1 03y ptgAdd Addition operator

In the following token descriptions, only the additional data following the token identifier is described.

12

3.2 Operators

3.2 Operators

There are 3 types of operators:

* Unary operators like the minus sign that negates a value. These operators pop the topmost operand
from the stack.

* Binary operators like addition or multiplication. These operators pop the two topmost operands from
the stack.

» Function operators represent the sheet functions of Excel. They operate on different numbers of
topmost operands on the stack. Either the function expects a fixed number of operands (for instance
SIN expects one operand) or a variable number of operands given in the function token (for instance
SUM is able to process from o to 30 operands).

3.3 Reference Classes

Some of the tokens (especially function operators and operand tokens) exist in 3 different versions:
reference class token, value class token and array class token. The token class depends on which type of
data the involved operator expects. Sometimes only 1 or 2 token classes make sense.

* Reference class token: The reference itself, independent of the cell contents.
 Value class token: A dereferenced value.

* Array class token: A matrix reference to a cell range.
The structure of the 8-bit operand token identifier is described in the following table.

Bit Mask Contents
40 1Fs Basic token identifier
6-5 60y 01, = Reference class token (token range 20;-3Fy)

10, = Value class token (token range 4 0,-5Fy)
11, = Array class token (token range 60,-7Fy)

7 80y 0, (zero)
The class of an operand token is marked in its name: The names of value class tokens contain a trailing
,V“ and the names of array class tokens a trailing ,A".
Examples for the different token classes:

* Reference class token: The formula =ROW (A1) returns 1, regardless of the content of A1. Cell reference
token is ptgRef (244).

 Value class token: The formula =A1+1 returns the value of the cell A1, increased by 1. Cell reference
token is ptgRefV (44,).

* Array class token: The formula =MDETERM (A1:C3) returns the determinant of the values inside of the
matrix range A1:C3. Area reference token is ptgAreaA (65.).

13

3 Formulas

3.4 Encoding of Cell References in Tokens

3.4.1 Cell references in BIFF2-BIFF7

In the BIFF versions up to BIFF5, it is possible to use 16384 rows (24). A cell reference contains the row
index as a 16-bit-value (zero-based, 0-16383), the column index as an 8-bit-value (zero-based, 0-255) and
two flags. The flags specify whether the row or column index is absolute or relative.

Contents of the row index (16-bit-value), BIFF2-BIFF7:

Bit Mask Contents

13-0 3FFFy Index to row (0-16383)

14 40004 0 = Absolute column reference 1 = Relative column reference
15 8000y 0 = Absolute row reference 1 = Relative row reference

Example: The reference B$6 has the absolute row index 5 and the relative column index 1. The value of
the encoded row index is 4005, (row 6, column is relative). The value of the column index is 01,
(column B).

3.4.2 Cell references in BIFF8

From BIFF8 on 65536 (2*°) rows are available. Therefore the column index field expands to a 16-bit-value
and contains the relative flags.

Contents of the column index (16-bit-value), BIFFS:

Bit Mask Contents

7-0 00FFy Index to column (0-255)

14 40004 0 = Absolute column reference 1 = Relative column reference
15 8000y 0 = Absolute row reference 1 = Relative row reference

Example: The reference B$6 has the absolute row index 5 and the relative column index 1. The value of
the encoded column index is 4001, (column B, column is relative). The value of the row index is 0005
(row 6).

3.5 Token Overview

Following a list of all tokens, separated into several token classes and ordered by token identifier.

3.5.1 Unary operator tokens

Token ID Token name Description
124 ptgUplus Unary plus
13y ptgUminus Unary minus
14y ptgPercent Percent sign

14

3.5.2 Binary operator tokens

Token ID
03y
04y
05y
06y
07y
08y
09y
0Ay
0By
0Cy
0Dy
0Ey
OFy
10y
11y

Token name
ptgAdd
ptgSub
ptgMul
ptgDiv
ptgPower
ptgConcat
ptgLT
ptgLE
ptgEQ
ptgGE
ptgGT
ptgNE
ptglsect
ptgUnion
ptgRange

Description

Addition

Subtraction
Multiplication
Division
Exponentiation
Concatenation

Less than

Less than or equal
Equal

Greater than or equal
Greater than

Not equal

Cell range intersection
Cell range union

Cell range

3.5.3 Function operator tokens

Token ID

21y 41y 61y
22y 42y 62y

Token name
ptgFunc
ptgFuncVar

Description
Function with fixed number of arguments
Function with variable number of arguments

3.5.4 Constant operand tokens

Token ID
16y
174
1Cy
1Dy
1Ey
1Fy

Token name
ptgMissArg
ptgStr
ptgErr
ptgBool
ptgint
ptgNum

Description

Missing argument
String constant

Error value

Boolean value

Integer value
Floating-point number

3.5 Token Overview

15

3 Formulas

3.5.5 Operand tokens

Token ID Token name Description
20y 404 60x ptgArray Array constant
23y 43y 63y ptgName Internal defined name
24y 444 64y ptgRef 2D cell reference
25y 45y 655 ptgArea 2D area reference
27y 4Ax 6A; ptgRefErr Deleted 2D cell reference
2By 4By 6By ptgAreaErr Deleted 2D area reference
39 59 79 ptgNameX External name
3Ay 524 7Ry ptgRef3d 3D cell reference
3Bu 5Bw 7Bs ptgAreasd 3D area reference
3Cy 5Cy 7Cy ptgRefErr3d Deleted 3D cell reference
3Dy 5Dy 7Dy ptgAreaErr3d Deleted 3D area reference
2do: more

3.6 Unary Operator Tokens

Unary operators perform an operation with the topmost operand from stack. The tokens do not contain
any additional data.

3.6.1 ptgUplus (12;)

Unary plus operator. This operator has no effect on the operand.
Example: +1 returns 1.

3.6.2 ptgUminus (13y)

Unary minus operator. Negates the operand.
Example: -1 returns -1.

3.6.3 ptgPercent (14x)

Percent sign. Divides the operand by 100.
Example: 1% returns 0.01.

3.7 Binary Operator Tokens

Binary operators perform an operation with the two topmost operands from stack. The tokens do not
contain any additional data.

3.7.1 ptgAdd (o3u)

Addition operator. Adds the operands.
Example: 3+2 returns 5.

16

3.7 Binary Operator Tokens

3.7.2 ptgSub (04x)

Subtraction operator. Subtracts the top operand from the second-to-top operand.
Example: 3-2 returns 1.

3.7.3 ptgMul (o5y)

Multiplication operator. Multiplicates the operands.
Example: 3*2 returns 6.

3.7.4 ptgDiv (06y)

Division operator. Divides the second-to-top operand by the top operand.
Example: 3/2 returns 1.5.

3.7.5 ptgPower (07x)

Exponentiation operator. Raises the second-to-top operand to the power of the top operand.
Example: 3”2 returns 9.

3.7.6 ptgConcat (08y)

Concatenation operator. Appends the top operand to the second-to-top operand.
Example: "ABC"&"DEF" returns "ABCDEF".

3.7.7 ptgLT (09x)

Less than operator. Returns TRUE if the second-to-top operand is less than the top operand.
Example: 3<2 returns FALSE.

3.7.8 ptgLE (0Ax)

Less than or equal operator. Returns TRUE if the second-to-top operand is less than or equal to the top
operand.

Example: 3<=2 returns FALSE.

3.7.9 ptgEQ (oBy)

Equality operator. Returns TRUE if the operands are equal.
Example: 3=2 returns FALSE.

3.7.10 ptgGE (0Cy)

Greater than or equal operator. Returns TRUE if the second-to-top operand is greater than or equal to the
top operand.

Example: 3>=2 returns TRUE.

3.7.11 ptgGT (oDy)

Greater than operator. Returns TRUE if the second-to-top operand is greater than the top operand.
Example: 3>2 returns TRUE.

17

3 Formulas

3.7.12 ptgNE (0Ey)

Inequality operator. Returns TRUE if the operands are not equal.
Example: 3<>2 returns TRUE.

3.7.13 ptglsect (OFy)

Intersection operator, represented by the space sign. Returns the intersected range of two ranges.
Example: A1:B3 B2:C3 returns B2:B3.

3.7.14 ptgUnion (104)

Union operator, represented by the comma sign (for instance english Excel) or semicolon (for instance
german Excel). Returns the union of two ranges.

Example: (A1:A2,A2:A3) will be handled as one parameter (useful for function parameters).

3.7.15 ptgRange (11y)

Range operatot, represented by the colon sign. Returns the rectangular range formed by two ranges. This
token occurs for instance by using defined names.

Example: namedcell : D5.

3.8 Function Operator Tokens

3.8.1 ptgFunc (21y), ptgFuncV (41y), ptgFuncA (61x)

This token contains the index to a function with fixed number of arguments.
Token ptgFunc, BIFF2-BIFF3:

Offset Size Contents
o 1 Index to a sheet function
Token ptgFunc, BIFF4-BIFF8:
Offset Size Contents
o 2 Index to a sheet function

3.8.2 ptgFuncVar (21y), ptgFuncVarV (414), ptgFuncVarA (61x)

This token contains the index to a function with variable number of arguments.
Token ptgFuncVar, BIFF2-BIFF3:

Offset Size Contents
o} 1 Number of arguments
1 1 Index to a sheet function
Token ptgFuncVar, BIFF4-BIFF8:
Offset Size Contents
o} 1 Number of arguments
1 2 Index to a sheet function

18

3.9 Constant Operand Tokens

3.9 Constant Operand Tokens

3.9.1 ptgMissArg (16y)

A missing argument in a function argument list is stored as a ptgMissArg token. This token does not
contain any additional data.

Example: SUM (1, ,3) - second argument is missing and represented by a ptgMissArg token.

3.9.2 ptgStr (17x)

This token contains a string constant. The maximum length of the string is 253 characters in BIFF2 (due
to the limitation of 255 bytes per formula) and 255 characters in BIFF3-BIFF7.

Token ptgStr, BIFF2-BIFF7:

Offset Size Contents
o] var. Byte string, 8-bit string length (»2.1)
Token ptgStr, BIFFS8:
Offset Size Contents
0 var. Unicode string, 16-bit string length, option flags occur always (-2.2)

Example: "ABC".

3.9.3 ptgErr (1Cy)
This token contains an error code.

Offset Size Contents
0] 1 Error code (=2.4)

3.9.4 ptgBool (1Dy)
This token contains a boolean value (TRUE or FALSE).

Offset Size Contents
o 1 o0 = FALSE, 1 = TRUE

3.9.5 ptgint (1Ey)
This token contains an unsigned 16-bit-integer value in the range from o to 65535.

Offset Size Contents
0 2 Unsigned integer value

3.9.6 ptgNumber (1Fy)

This token contains an IEEE floating-point number.
Offset Size Contents
o] 8 IEEE floating-point number

19

3 Formulas

3.10 Operand Tokens

3.10.1 ptgArray (20y), ptgArrayV (404), ptgArrayA (60)

This token contains an array constant. For instance the 2x1 matrix {1;2} is an array constant. The
values of the array constant do not follow the token identifier but are stored behind the complete token
array.

Token ptgArray, BIFF2-BIFFS:
Offset Size Contents
o 7 Not used
The constants of the array are stored row by row behind the formula in a list. The length of this list has
not been added to the leading formula size field.
Array constant list, BIFF2-BIFF7:

Offset Size Contents
o 1 Number of columns (nc). The value 0 means 256 columns.
1 2 Number of rows (nr)
3 var. List of nc'nr cached values (+2.5)

Array constant list, BIFF8:

Offset Size Contents
o] 1 Number of columns decreased by 1 (nc)
1 2 Number of rows decreased by 1 (nx)
3 var List of (ng+1)-(nr+1) cached values (+2.5)

3.10.2 ptgName (23x), ptgNameV (43x), ptgNameA (63x)

This token contains the one-based index to a NAME record (-5.25). In BIFF2-BIFF4 this could be the index
to an EXTERNNAME record (=5.12) too. From BIFF5 on an external name is represented by the token
ptgNameX (=3.10.7).

Token ptgName, BIFF2:

Offset Size Contents
o] 2 One-based index to NAME record (=5.25) or EXTERNNAME record (-5.12)
2 5 Not used
Token ptgName, BIFF3-BIFF4:
Offset Size Contents
o 2 One-based index to NAME record (=5.25) or EXTERNNAME record (-5.12)
2 8 Not used

Token ptgName, BIFF5/BIFF7:

Offset Size Contents
o] 2 One-based index to NAME record (-5.25)
2 12 Not used

Token ptgName, BIFF8:

Offset Size Contents
o] 2 One-based index to NAME record (-5.25)
2 2 Not used

20

3.10 Operand Tokens

3.10.3 ptgRef (244), ptgRefV (44u), ptgRefA (64x)

This token contains the reference to a cell in the same sheet.
Token ptgRef, BIFF2-BIFF7:

Offset Size Contents
o] 2 Index to row and relative flags (»3.4.1)
2 1 Index to column
Token ptgRef, BIFF8:
Offset Size Contents
0] 2 Index to row
2 2 Index to column and relative flags (=3.4.2)

3.10.4 ptgArea (25y), ptgAreaV (454), ptgAreaA (655)

This token contains the reference to a rectangular cell range in the same sheet.
Token ptgArea, BIFF2-BIFF7:

Offset Size Contents
o] 2 Index to first row and relative flags (+3.4.1)
2 2 Index to last row and relative flags (#3.4.1)
4 1 Index to first column
5 1 Index to last column

Token ptgArea, BIFF8:

Offset Size Contents

o] 2 Index to first row

2 2 Index to last row
4 2 Index to first column and relative flags (23.4.2)
6 2 Index to last column and relative flags (=3.4.2)

3.10.5 ptgRefErr (2Ay), ptgRefErrV (4Au), ptgRefErrA (6Ay)

This token contains the last reference to a deleted cell in the same sheet. The structure is equal to the
token ptgRef (+3.10.3).

3.10.6 ptgAreaErr (2By), ptgAreaErrV (4By), ptgAreaErrA (6By)

This token contains the last reference to a deleted rectangular cell range in the same sheet. The structure
is equal to the token ptgArea (=3.10.4).

21

3 Formulas

3.10.7 ptgNameX (39x), ptgNameXV (594), ptgNameXA (79x)
(BIFF5-BIFFS)

This token contains the index to a NAME or EXTERNNAME record. It occurs by using internal or external
names, AddIn functions, DDE links or linked OLE objects. See —=4.5.2 for details about references in
BIFF5/BIFF7 and —4.5.3 for BIFFS.

Token ptgNameX, BIFF5/BIFF7:
Offset Size Contents

o] 2 One-based index to EXTERNSHEET record (-5.13). A negative value indicates
the own workbook. In this case a NAME record is indexed below. The absolute
value indexes to the EXTERNSHEET record that contains the sheet name.

2 8 Not used
10 2 One-based index to NAME record (=5.25) or EXTERNNAME record (-5.12)
12 12 Not used
Token ptgNameX, BIFFS8:

Offset Size Contents
o] 2 Index to REF entry in EXTERNSHEET record (=5.13)
2 2 One-based index to NAME record (=5.25) or EXTERNNAME record (—=5.12)
4 2 Not used

3.10.8 ptgRef3d (3Ay), ptgRef3dV (5Ay4), ptgRef3dA (7Ax) (BIFF5-BIFES)

This token contains a 3D reference or an external reference to a cell. See »4.5.2 for details about
references in BIFF5/BIFF7 and -4.5.3 for BIFF8.

Token ptgRef3d, BIFF5/BIFF7:
Offset Size Contents

o] 2 One-based index to EXTERNSHEET record (-5.13). A negative value indicates a
3D reference to the own workbook. The absolute value indexes to the
EXTERNSHEET record that contains the first sheet name.

2 8 Not used
10 2 3D reference: Index of first referenced sheet; External reference: Not used
12 2 3D reference: Index of last referenced sheet; External reference: Not used
14 2 Index to row and relative flags (#3.4.1)
16 1 Index to column
Token ptgRef3d, BIFF8:

Offset Size Contents
o] 2 Index to REF entry in EXTERNSHEET record (=5.13)
2 2 Index to row
4 2 Index to column and relative flags (=3.4.2)

22

3.10 Operand Tokens

3.10.9 ptgArea3d (3By), ptgArea3dV (5By), ptgArea3dA (7By) (BIFF5-BIFES)

This token contains a 3D reference or an external reference to a rectangular cell range. See =4.5.2 for
details about references in BIFF5/BIFF7 and =4.5.3 for BIFFS.

Token ptgArea3d, BIFF5/BIFF7:
Offset Size Contents

o] 2 One-based index to EXTERNSHEET record (-5.13). A negative value indicates a
3D reference to the own workbook. The absolute value indexes to the
EXTERNSHEET record that contains the first sheet name.

2 8 Not used
10 2 3D reference: Index of first referenced sheet; External reference: Not used
12 2 3D reference: Index of last referenced sheet; External reference: Not used
14 2 Index to first row and relative flags (»3.4.1)
16 2 Index to last row and relative flags (23.4.1)
18 1 Index to first column
19 1 Index to last column
Token ptgAreasd, BIFF8:

Offset Size Contents
o] 2 Index to REF entry in EXTERNSHEET record (-»5.13)
2 2 Index to first row
4 2 Index to last row
6 2 Index to first column and relative flags (»3.4.2)
8 2 Index to last column and relative flags (=3.4.2)

3.10.10 ptgRefErr3d (3Cy), ptgRefErr3dV (5Cu), ptgRefErr3dA (7Cx)
(BIFF5-BIFF8)

This token contains the last 3D reference or external reference to a deleted cell. The structure is equal to
the token ptgRef3d (=3.10.8).

3.10.11 ptgAreaErr3d (3Du), ptgAreaErr3dV (5Du), ptgAreaErr3dA (7Dy)
(BIFF5-BIFF8)

This token contains the last 3D reference or external reference to a deleted rectangular cell range. The
structure is equal to the token ptgAreasd (=3.10.9).

23

4 Worksheet/Workbook Structure

4 Worksheet/Workbook Structure

In an Excel file, some complex features are splitted into several records. To keep these features
consistent, the position and order of the records is very important. This chapter contains details about
the correct combination of the records inside of the stream. The internal structure of the records is
described in chapter 5.

4.1 Worksheet Stream (BIFF2-BIFF4)

The whole worksheet file consists of the worksheet stream. All records of the worksheet are enclosed by a
leading BOF record (-5.4) and a trailing EOF record (-5.10). The sheet contents section contains all infor-
mation about the worksheet, for instance sheet dimension, view settings, a font list, a list of defined
names and external references, of course the contents and formats of all cells, row heights, column
widths, drawing objects, chart objects, etc.

Common structure of a worksheet stream:
BOF Type = worksheet
Sheet contents
EOF

4.2 Workbook Stream (BIFF4)

The whole BIFF4 workbook file consists of the workbook stream. It contains a workbook globals section
and a list of the worksheets. The sheets are embedded into the outer pair of BOF/EOF records. The
workbook globals section contains common information about the workbook, for instance text encoding,
global view settings or a list of all sheet names. Additionally, in each workbook a SHEETSOFFSET record
(-+5.32) is present. The data of the sheets is stored in worksheet substreams. Each substream is preceded
by a SHEETHDR record (-5.31) which contains the name of the sheet and the size of the following
substream. The SHEETSOFFSET record mentioned above contains the stream position of the first
SHEETHDR record. The substreams have the same structure as described in chapter 4.1. Note: In this
context the term ,substream” is only a sequence of records and not a storage sub stream of OLE2
storages.

24

4.2 Workbook Stream (BIFF4)

Common structure of a workbook stream with two sheets, BIFF4:

BOF Type = workbook globals
Workbook globals
SHEETSOFFSET Position of the first SHEETHDR record
Workbook globals
SHEETHDR Sheet name = ,Sheet1”
Byte length of following BOF/EOF record block
BOF Type = worksheet
Sheet contents
EOF
SHEETHDR Sheet name = ,Sheet2"
Byte length of following BOF/EOF record block
BOF Type = worksheet
Sheet contents
EOF
EOF

4.3 Workbook Stream (BIFF5-BIFF8)

From BIFF5 on an Excel document is stored as an OLE2 storage. The workbook stream is located in the
root directory of the storage. In BIFF5/BIFF7 it is named ,Book”, in BIFF8 ,Workbook“. The names are
case-sensitive. In difference to the BIFF4 workbook stream, the worksheet substreams are appended to
the workbook globals section, not embedded. The workbook global section and sheet contents section
have similar contents as described for BIFF4 workbooks (=4.2).

Common structure of a workbook stream with two sheets, BIFF5-BIFF8:

BOF Type = workbook globals
Workbook globals

EOF

BOF Type = worksheet
Sheet contents

EOF

BOF Type = worksheet
Sheet contents

EOF

25

4 Worksheet/Workbook Structure

4.4 Shared String Table (BIFF8)

A BIFF8 workbook collects all strings of all text cells in a global list, the shared string table (SST). This
table is located in the workbook globals section in the record SST (=5.33). An SST record is followed by an
EXTSST record (=5.14) which stores stream positions for a string hash table. Text cells are represented by
LABELSST records (-»5.22) which contain indexes to the shared string table. For reading Excel files only
the SST record and the LABELSST records are important.

Example: A workbook contains anywhere the strings ,AAA“, ,BBB" and ,CCC".

BOF Type = workbook globals
Workbook globals
SST String o = ,AAA”

String 1 = , BBB“
String 2 = ,,CCC*

EXTSST

Workbook globals
EOF
BOF Type = worksheet

Sheet contents
LABELSST String = 0
LABELSST String = 2

Sheet contents
LABELSST String = 1
LABELSST String = 0

Sheet contents
EOF

4.5 Internal and External References

This chapter describes all types of 3D and external references. In detail, this could be:

« a reference to a cell or a cell range of another sheet in the same workbook (3D reference),
+ areference to a cell or a cell range of a sheet in another workbook (external reference),

+ a reference to a global or local defined name (internal name),

+ areference to a defined name in another workbook (external name),

an AddIn function,
a DDE link,
* an OLE object link.

For external references and external names a combination of XCT and CRN records occurs which store
values of cells of the document. In the case the document cannot be found these values will be used to
get the result of an external reference. An XCT record (-5.36) contains the number of following CRN
records. A CRN record (-5.7) stores the contents of one cell or a sequence of cells of one row.
Fragmentary cell ranges or cell ranges spanning over more than one row are splitted into several CRN
records. 3D references do not use these records because the referenced cells are located in the own
document.

4.5.1 References in BIFF2-BIFF4

2do

26

4.5 Internal and External References

4.5.2 References in BIFF5/BIFF7

The document names and sheet names of references are stored in a list of EXTERNSHEET records. Each
worksheet contains an EXTERNSHEET list with documents referenced from this sheet. Formulas in the
sheet use indexes to the EXTERNSHEET list.

The XCT and CRN records occur behind the last EXTERNNAME record as far as they exist, otherwise
directly behind the respective EXTERNSHEET record.

» External and 3D references

External and 3D references are represented in a formula by the tokens ptgRef3d (+3.10.8) or ptgArea3d
(=»3.10.9). These tokens contain an index to an EXTERNSHEET record located in the own worksheet and
indexes to the first and last referenced sheet.

For 3D references, the tokens contain a negative EXTERNSHEET index, indicating a reference into the
own workbook. The absolute value is the one-based index of the EXTERNSHEET record that contains the
name of the first sheet. If the referenced sheets do not exist anymore, these tokens contain the sheet
indexes FFFFy (deleted 3D reference).

Each external reference contains the one-based index to an EXTERNSHEET record. The sheet indexes of
the tokens are not used.

Example: A document with 7 sheets (named from ,Sheet1” to ,Sheet7“) contains the formulas
=Sheet2!Al,

=SUM (Sheet4 :Sheet6!A1:B3),

=SUM ([example.x1s] ExtSheet1!A1:B2) (contents: A1=1.11, B1=2.22, A2=3.33, B2=4.44),

= [example.x1ls] ExtSheet3!Al (contents: ,ABCD“) and

=Sheet8!Al.
EXTERNSHEET 1 Name = ,Sheet2”
EXTERNSHEET 2 Name = ,Sheet4”
EXTERNSHEET 3 Name = ,Sheet6”
EXTERNSHEET 4 Name =, [example xIs]ExtSheet1”
XCT Number of CRN = 2
CRN o Cell range = A1:B1, contents = 1.11, 2.22
CRN 1 Cell range = A2:B2, contents = 3.33, 4.44
EXTERNSHEET 5 Name = ,[example.xls]ExtSheet3”
XCT Number of CRN = 1
CRN o Cell range = A1, contents = ,ABCD"
EXTERNSHEET 6 Name = ,Sheet8"

* Internal names

2do

« External names

2do

e AddIn functions

2do

* DDE links, OLE object links

2do

27

4 Worksheet/Workbook Structure

4.5.3 References in BIFF8

The main data of all types of references is stored in a list inside of the workbook globals section. All
formulas use only indexes to use specific references. In BIFF8 each referenced document is represented
by a SUPBOOK record (=5.35). A SUPBOOK contains the name of the document and the names of the
sheets of the document. After the last SUPBOOK occurs only one EXTERNSHEET record (-5.13). It
contains a list with indexes to the SUPBOOKs for each used reference anywhere in the document.
Formulas use indexes into this EXTERNSHEET list.

For the following examples an external document ,examplexls” is used. It contains 3 sheets named
,ExtSheet1“, ,ExtSheet2“ and , ExtSheet3"“.

Example: A document contains (among other references) the two formulas

=[example.x1s] ExtSheet2!Al and

=[example.x1ls] ExtSheetl!Al.

Workbook globals
SUPBOOK o Any content
SUPBOOK 1 Document = ,,example.xIs“

Sheet o0 = ,ExtSheet1“
Sheet 1 = ,ExtSheet2”
Sheet 2 = ,ExtSheet3“
SUPBOOK 2 Any content
EXTERNSHEET REF o = any reference
REF 1 = {SUPBOOK = 1, sheet range = 1...1}
REF 2 = any reference
REF 3 = {SUPBOOK = 1, sheet range = 0...0}
REF 4 = any reference

Workbook globals

The first formula uses REF 1 in the EXTERNSHEET record. REF 1 refers to SUPBOOK 1 and sheet range 1...1.
This means, the document ,example.xls“ is used (document of SUPBOOK 1) and the name of the sheet is
,ExtSheet2“ (sheet1 of SUPBOOK 1). In the same way, the second formula uses REF3 in the
EXTERNSHEET record. All list entries inside of the EXTERNSHEET record are unique. For instance all
formulas in the workbook referring to sheet ,ExtSheet2” of the document ,example.xIs“ use REF 1. All
other SUPBOOKSs and REFs are placeholders for other references in this example.

The XCT and CRN records occur behind the EXTERNNAME records as far as they exist, otherwise directly
behind the respective SUPBOOK record.

» External and 3D references

The SUPBOOK for the own document has a special format: It contains only the number of all sheets and
the value 0401, instead of the sheet names. The sheet range indexes in the EXTERNSHEET record refer to
the position of the sheets (zero-based). If a referenced sheet does not exist anymore, the sheet index
FFFFy will occur (deleted 3D reference).

28

4.5 Internal and External References

Example: A document with 7 sheets (named from ,Sheet1” to ,Sheet7“) contains the formulas
=Sheet2!Al,

=SUM (Sheet4 :Sheet6!A1:B3),

=SUM ([example.x1ls] ExtSheet1!A1:B2) (contents: A1=1.11, B1=2.22, A2=3.33, B2=4.44),

= [example.x1ls] ExtSheet3!A1l (contents: ,ABCD“) and

=Sheet8!Al.

SUPBOOK o Number of sheets: 7

0401y (own workbook)
SUPBOOK 1 Document = ,,example.xIs“

Sheet o0 = ,ExtSheet1”

Sheet 1 = ,ExtSheet2“

Sheet 2 = ,ExtSheet3“
XCT Number of CRN = 2, sheet = 0 (ExtSheet1)
CRN o Cell range = A1:B1, contents = 1.11, 2.22
CRN 1 Cell range = A2:B2, contents = 3.33, 4.44
XCT Number of CRN = 1, sheet = 2 (ExtSheet3)
CRN o Cell range = A1, contents = ,ABCD"

EXTERNSHEET REF 0 = {SUPBOOK = o, sheet range = 1...1}
REF 1 = {SUPBOOK = 0, sheet range = 3...5}
REF 2 = {SUPBOOK = 1, sheet range = 0...0}
REF 3 = {SUPBOOK = 1, sheet range = 1..1}
REF 4 = {SUPBOOK = o, sheet range = FFFFy...FFFFy}

Inside of the first formula the cell reference is represented by the token ptgRef3d (=3.10.8). The second
formula contains the token ptgArea3sd (-3.10.9).

* Internal names

All internal names are stored in a list of NAME records (=5.25) that follows the EXTERNSHEET record.
There exist two types of internal names: global names which are valid in the whole workbook and local
names which are attached to a specific sheet. For instance the local name ,MyCell” of the sheet ,Sheet1”
can be used from everywhere in the workbook by entering =Sheetl!MyCell. Each NAME record
contains the name itself and a one-based sheet index. The index zero indicates a global name. If a
SUPBOOK contains local names, a special REF entry will be created in the EXTERNSHEET record. It
contains the index to the SUPBOOK and the sheet range FFFE,...FFFEy.

Example for internal names: A document contains

- The global name ,,GlobalName*,

- The local names ,Sheet1!Name“ and ,Sheet2!Name“ and

- In Sheeta the formulas =GlobalName, =Name, =Sheet1 | Name and =Sheet2 | Name.

SUPBOOK o Number of sheets: 3
0401, (own workbook)

EXTERNSHEET REF o0 = {SUPBOOK = o, sheet range = 0...0}
REF 1 = {SUPBOOK = 0, sheet range = FFFE,... FFFEy}

NAME 1 Name = ,GlobalName*, sheet = 0 (Global)
NAME 2 Name = ,Name*, sheet = 1 (Sheet1)
NAME 3 Name = ,Name®, sheet = 2 (Sheet2)

Inside of the formula a global name or a local name of the own sheet is represented by the token
ptgName (=3.10.2) with an one-based index to the NAME record list. The first formula in the example
above contains the token ptgNameV with index 1 and the second formula the same token with index 2.
Local names from other sheets are represented by the token ptgNameX (=3.10.7) with an index to the
special REF entry of the EXTERNSHEET record and an index to the NAME record list. The third formula
contains the token ptgNameX with the value {REF = 1, Name = 2} and the last formula the same token
with the value {REF = 1, Name = 3}. Ref 1 refers to SUPBOOK o and Name 2 or Name 3 refer to the
respective NAME records.

29

4 Worksheet/Workbook Structure

+ External names

In Excel formulas can use names located in another workbook. In this case for each name an
EXTERNNAME record (=5.12) after the SUPBOOK record occurs. The EXTERNNAME record contains the
name itself and the one-based index to the sheet. Again the index zero indicates a global name. If a
SUPBOOK contains external names, a special REF entry will be created in the EXTERNSHEET record. It
contains the index to the SUPBOOK and the sheet range FFFEy... FFFEy.

Example: A document contains the formulas

=example.xls!GlobalName (location: ExtSheet1!B22; contents: 22),

= [example.x1ls] ExtSheet3 !Name (location: ExtSheet3!C33; contents: ,ABCD“) and

= [example.x1ls] ExtSheet1 !Name (location: ExtSheet1!A11; contents: 11).

SUPBOOK o Document = ,,example.xls”
Sheet o0 = ,ExtSheet1“
Sheet 1 = ,ExtSheet2“
Sheet 2 = ,ExtSheet3”

EXTERNNAME 1 Name =, GlobalName®, sheet = o (Global)
EXTERNNAME 2 Name = ,Name*, sheet = 3 (ExtSheet3)
EXTERNNAME 3 Name = ,Name®“, sheet = 1 (ExtSheet1)

XCT Number of CRN = 2, sheet = 0 (ExtSheet1)
CRN o Cell range = A11, contents = 11

CRN 1 Cell range = B22, contents = 22

XCT Number of CRN = 1, sheet = 2 (ExtSheet3)
CRN o Cell range = C33, contents = ,ABCD“

EXTERNSHEET REF 1 = {SUPBOOKX = 0, sheet range = FFFEy...FFFEy}

Inside of a formula an external name is represented by the token ptgNameX (-3.10.7). It contains the
index to the special REF entry inside of the EXTERNSHEET record and the index to a EXTERNNAME record
(one-based). The second formula in the example above contains the token ptgNameXV with the value
{REF = 0, ExtName =2}. REF1 refers to SUPBOOK o and ExtName 2 refers to EXTERNNAME 2 (of
SUPBOOK o).

¢ AddIn functions

AddIn functions are stored similar to external names. If a formula uses an AddIn function, a special
SUPBOOK containing only the value 3201, will occur. Behind of this SUPBOOK the names of all used
AddIn functions are listed, each inside of an EXTERNNAME record. A special REF entry with the sheet
range FFFEq..FFFE, will be inserted into the EXTERNSHEET reference list.

Example: A document contains the formulas =ISODD (1) and =ISEVEN (1).

SUPBOOK o 3A01, (AddIn)

EXTERNNAME 1 Name = ,ISODD"

EXTERNNAME 2 Name = ,ISEVEN“

EXTERNSHEET REF o0 = {SUPBOOK = o, sheet range = FFFE...FFFEy}

* DDE links, OLE object links

DDE links and OLE object links expect the name of the server application (DDE) or the class name (OLE)
and the name of a source document. These items are encoded in a SUPBOOK record. The SUPBOOK is
followed by EXTERNNAME records with additional data of the links. An EXTERNNAME record for a DDE
links contains the item (data source range) and an EXTERNNAME record for an OLE object link contains
the identifier of the object data storage.

30

4.5 Internal and External References

Example: A document contains a DDE link to the range ,Sheet1.A1:B2“ inside of the Calc document
~,example.sxc” and an OLE object link to the bitmap file ,,example.bmp”.

SUPBOOK o Server application = ,soffice”
Document = ,,example.sxc”

EXTERNNAME 1 Type = DDE link
Item = ,Sheet1.A1:B2“

SUPBOOK 1 Class name = ,Package”
Document = ,,example.bmp”

EXTERNNAME 1 Type = OLE object link
Storage = 000123454 (storage name = ,LNK00012345%)

EXTERNSHEET REF o = {SUPBOOK = 0, sheet range = FFFEy...FFFE}
REF 1 = {SUPBOOKX = 1, sheet range = FFFEy...FFFEy}

Inside of a formula a DDE link is represented by the token ptgNameX (-3.10.7). An OLE object link
contains a ptgNameX token inside of its OB]J record.

4.6 Array Formulas, Shared Formulas

2do

4.7 Multiple Operations (Table Operations)

2do

4.8 AutoFilter

2do

4.9 Scenarios

2do

4.10 Web Queries (BIFF8)

2do

31

5 Worksheet/Workbook Records

5.1 Overview, Ordered by Record IDs

32

5 Worksheet/Workbook Records

Record ID

0000y
0001y
0002y
0003y
0004y
0005y
0006y
0007y
0009y
0002y
0013y
0016y
00174
0018y
001Ey
0023y
0031y
003Cy
0043y
0044y
0051y
0059
0052y
008Ey
008Fy
0092y
00BDy
00BEy
00EOy
00FCy
00FDy
00FFy
01AE,
01B8y
0200y
0201y
0203y
0204y

Record name

DIMENSIONS
BLANK
INTEGER
NUMBER
LABEL
BOOLERR
FORMULA
STRING

BOF

EOF
PASSWORD
EXTERNCOUNT
EXTERNSHEET
NAME
FORMAT
EXTERNNAME
FONT
CONTINUE

XF

IXFE
DCONREF

XCT

CRN
SHEETSOFFSET
SHEETHDR
PALETTE
MULRK
MULBLANK
XF

SST

LABELSST
EXTSST
SUPBOOK
HLINK
DIMENSIONS
BLANK
NUMBER
LABEL

Occurs in BIFF versions

2

KoM M X M M K XK XK K XK X X X X X X X X

3

HKoOoXOX X

i

HooX XK X

4

KoXoOX X

KoXOX X X X

KoK OX X

5

i HKoOX XK XX

>

Moo

KoMK X

HKooX XK X

®oow XX X XX

¥

®oKoX K

KoXOX X

o

Ko X X X X X X) X XX

5.1 Overview, Ordered by Record IDs

Occurs in BIFF versions

Record ID Record name
2 3 4 5 7 8
02054 BOOLERR X X X X X
0206y FORMULA X
0207y STRING X X X X X
0209y BOF X
0218y NAME X X
0223y EXTERNNAME X X
0231y FONT X X
02434 XF X
027Ey RK X X X X X
0406y FORMULA X
0409y BOF X
041Ey FORMAT X X X X
0443y XF X
08004 SCREENTIP X
08094 BOF X X X
2do: more

33

5 Worksheet/Workbook Records

5.2 Overview, Ordered by Record Names

Occurs in BIFF versions

Record ID Record name
2 3 4 5
0001y 0201y BLANK X X X X
0*09y BOF X X X X
00055 02053 BOOLERR X X X X
003Cy CONTINUE X X X X
0052y CRN X X X
0051y DCONREF X X X X
0000y 02005 DIMENSIONS X X X X
0002y EOF X X X X
0016y EXTERNCOUNT X X X X
00234 0223y EXTERNNAME X X X X
00174 EXTERNSHEET X X X X
00FFy EXTSST
0031y 0231y FONT X X X X
001Ey 041Ey FORMAT X X X X
0*06y FORMULA X X X X
01B8y HLINK
0002y INTEGER X
0044y IXFE X
0004y 0204y LABEL X X X X
00FDy LABELSST
00BEy MULBLANK X
00BDy MULRK X
0018y 0218y NAME X X X X
0003y 0203y NUMBER X X X X
0092y PALETTE X X X X
0013y PASSWORD X X X X
027Ey RK X X X
0800y SCREENTIP
008Fy SHEETHDR X
008Ey SHEETSOFFSET X
00FCy SST
00074 0207¢ STRING X X X X
01AEy SUPBOOK
00594 XCT X X X
0*43; 00EOy XF X X X X
2do: more

34

RO R X X X X X XX

®oow

KoXROX XK X XX

Kok X R X XK X XX RKoXoXK X X XK X KoK X XK X XK X X

XXX XX

5.3 BLANK

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFF8
0001y 0201y 0201y 0201y 0201y 0201y

This record represents an empty cell. It contains the cell address and formatting information.

Record BLANK, BIFF2:

Offset Size Contents
0] 2 Index to row
2 2 Index to column
4 3 Cell attributes (»2.9)
Record BLANK, BIFF3-BIFFS:
Offset Size Contents
o] 2 Index to row
2 2 Index to column
4 2 Index to XF record (-5.37)

5.4 BOF - Begin of File

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
0009y 0209y 0409y 0809y 0809; 08094

5.3 BLANK

The BOF record is the first record of a worksheet, the workbook globals section, a chart or a macro sheet.

Record BOF, BIFF2:

Offset Size Contents
o] 2 Version
2 2 Type of the following data: 0010y = Worksheet

0020y = Chart
00404 = Macro sheet

Record BOF, BIFF3:

Offset Size Contents
o 2 Version
2 2 Type of the following data: 00104 = Worksheet
00204 = Chart
0040y = Macro sheet
4 2 Not used
Record BOF, BIFF4:
Offset Size Contents
0 2 Version
2 2 Type of the following data: 0010y = Worksheet
0020y = Chart
00404 = Macro sheet
0100y = Workbook globals
4 2 Not used

35

5 Worksheet/Workbook Records

Record BOF, BIFF5/BIFF7:

Offset Size Contents

o] 2 Version

2 2 Type of the following data: 0005, = Workbook globals
0006y = Visual Basic module
00105 = Worksheet
0020y = Chart
0040y = BIFF4 Macro sheet
01004 = BIFF4 Workbook globals

4 2 Build identifier

6 2 Build year

Record BOF, BIFF8:
Offset Size Contents

o] 2 Version, contains 0600y for BIFF8

2 2 Type of the following data: 0005y = Workbook globals
00065 = Visual Basic module
0010y = Worksheet
00204 = Chart
0040y = BIFF4 Macro sheet
01004 = BIFF4 Workbook globals

4 2 Build identifier

6 2 Build year

8 4 File history flags

12 4 Lowest Excel version that can read all records in this file

5.5 BOOLERR

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
0005y 0205y 0205y 02055y 02055 02054

This record represents a boolean or error value cell.
Record BOOLERR, BIFF2:

Offset Size Contents
o] 2 Index to row
2 2 Index to column
4 3 Cell attributes (=2.9)
7 1 Boolean or error value, depending on the following byte
8 1 o0 = Boolean value; 1 = Error code
Record BOOLERR, BIFF3-BIFF8:
Offset Size Contents
o] 2 Index to row
2 2 Index to column
4 2 Index to XF record (-5.37)

)]
[

Boolean or error value, depending on the following byte
0 = Boolean value; 1 = Error code

N
[y

If the value field is a boolean value, it will contain o for FALSE and 1 for TRUE. See -2.4 for a list of error
codes.

36

5.6 CONTINUE

5.6 CONTINUE

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFF8
003Cy 003Cy 003Cy 003Cy 003Cy 003Cy

Everytime the content of a record exceeds the given limits (see table), the record must be splitted.
Several CONTINUE records containing the additional data are added after the parent record.

BIFF version Maximum data size of a record
BIFF2-BIFF7 2080 bytes (2084 bytes including record header)
BIFF8 8224 bytes (8228 bytes including record header)
Record CONTINUE, BIFF2-BIFF8:
Offset Size Contents
o] var. data continuation of the previous record

Unicode strings are splitted in a special way. At the beginning of each CONTINUE record the option flags
byte is repeated. Only the character size flag will be set in this flags byte, the Rich-Text flag and the Far-
East flag are set to zero.

Attention: In each CONTINUE record it is possible that the character size changes from 8-bit-characters to
16-bit-characters and vice versa. Never an Unicode string is splitted between character count field and
option flags field or between option flags field and first character.

Example: The remaining size of a record may be 10 bytes (it has 8214 bytes of data). Now the string
L,ABCDEFGHQI“ has to be stored in this record. ,@“ may be a special character with the character code
1234, Note: The records are shown with their headers to make the example clearer.

Offset Size Contents Description
o] 2 Any record identifier
2 2 2020y (8224) Record data size
4 8214 Any data
8218 2 0002 (10) Unicode string character count
8220 1 00y Unicode string option flags (8-bit-characters)
8221 7 41y 424 ... 474 8-bit-character array ,,ABCDEFG“
8228 2 003Cy Record identifier CONTINUE
8230 2 00074 (7) Record data size
8232 1 01y Unicode string option flags (16-bit-characters)
8233 2 0048y 16-bit-character ,H”
8235 2 1234y 16-bit-character ,®“
8237 2 0049y 16-bit-character ,I1“

5.7 CRN

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
— 005A; 005A; 005A; 005A; 005A4

This record stores the contents of an external cell or cell range. An external cell range has one row only.
If a cell range spans over more than one row, several CRN records will be created. See =4.5 for details
about external references.

Record CRN, BIFF3-BIFF8:

Offset Size Contents
o 1 Index to last column inside of the referenced sheet (1¢)
1 1 Index to first column inside of the referenced sheet (fc)
2 2 Index to row inside of the referenced sheet
4 var. List of 1c-fc+1 cached values (»2.5)

37

5 Worksheet/Workbook Records

5.8 DCONREF - Data Consolidation Reference

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFFS
0051y 0051y 0051y 0051y 0051y 0051y

2do

5.9 DIMENSIONS

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFFS8
0000y 0200y 0200y 02004 0200y 02004

2do

5.10 EOF - End of File

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
000A; 000Ay 000Ay 000A; 000Az 000A4

This record has no content. It indicates the end of a record block with leading BOF record (-5.4). This
could be the end of the workbook globals, a worksheet, a chart, etc.

5.11 EXTERNCOUNT

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
0016y 0016y 0016y 0016y 00164 -—-

This record contains the number of following EXTERNSHEET records. In BIFF8 this record is omitted
because there occurs only one EXTERNSHEET record. See —4.5.1 for details about external references in
BIFF2-BIFF4 and —»4.5.2 for BIFF5/BIFF7.

Record EXTERNCOUNT, BIFF2-BIFF7:

Offset Size Contents
o] 2 Number of following EXTERNSHEET records (-5.13)

5.12 EXTERNNAME

BIFF2 BIFF3 BIFFq BIFF5 BIFFS
0023y 0223y 0223y 0023y 0023y

This record contains the name of an external defined name, the name of an AddIn function, a DDE link
item or an OLE object storage name (BIFF8).

* EXTERNNAME in BIFF2-BIFF7

The meaning of the name is dependent on the leading EXTERNSHEET record (-5.13). See =4.5.1 for
details about external references in BIFF2-BIFF4 and —4.5.2 for BIFF5/BIFF7.

Record EXTERNNAME, BIFF2-BIFF7:

Offset Size Contents
o} var. External name (byte string, 8-bit string length, »2.1)

38

5.12 EXTERNNAME

If the record contains an item of a DDE link, a list with cached values will be appended to the string.
These values are used as results for the DDE link. They are saved row by row for a DDE link that spans
over several cells. Note: Only the results of the DDE link (the contents of the referenced cells) are stored,
not the results of the complete formulas.

Record EXTERNNAME for DDE items, BIFF2-BIFF7:

Offset Size Contents
o] var. DDE item (byte string, 8-bit string length, »2.1)
var. 1 Number of columns (nc). The value 0 means 256 columns.
var. 2 Number of rows (nr)
var. var. List of nc'nr cached values (-2.5)

« EXTERNNAME in BIFF8

In BIFF8 the record contains option flags which describe the type of the external name. So, this record
must follow the correct SUPBOOK record (=5.35) and must contain the correct flags. See -4.5.3 for details
about external references in BIFFS.

Record EXTERNNAME for external names and AddIn functions, BIFFS8:

Offset Size Contents
0 2 Option flags (see below)
2 2 One-based sheet index. The value o means all sheets or AddIn function.
4 2 Not used
6 var. External name or AddIn function name (Unicode string, 8-bit string length,
-2.2)
var. var. For external names only: formula data (RPN token array, -3)
Record EXTERNNAME for DDE links, BIFF8:
Offset Size Contents
0 2 Option flags (see below)
2 4 Not used
6 var. DDE item (Unicode string, 8-bit string length, »2.2)
var. 1 Number of columns decreased by 1 (ng)
var. 2 Number of rows decreased by 1 (nr)
var. var. List of (n¢+1)(nr+1) cached values (=2.5)

Record EXTERNNAME for OLE object links, BIFF8:

Offset Size Contents
o 2 Option flags (see below)
2 4 Storage identifier
6 3 01y 00y 27y
Option flags:

Bit Mask Contents
o 0001y o = No Builtln name 1 = BuiltIn name
1 0002y 0= Manual DDE/OLE link 1 = Automatic DDE/OLE link
4 0010y o = External name or DDE link 1 = OLE object link

14-5 7FEOs For DDE links only: clipboard format of last successful update

39

5 Worksheet/Workbook Records

5.13 EXTERNSHEET

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFFS
00174 00174 00174 0017y 00174 00174

* EXTERNSHEET in BIFF2-BIFF7

In the file format versions up to BIFF7 this record stores the name of an external document and a sheet
name inside of this document. See »4.5.1 for details about external references in BIFF2-BIFF4 and —4.5.2
for BIFF5/BIFF7.

Record EXTERNSHEET, BIFF2-BIFF7:

Offset Size Contents
(o} var. Encoded document and sheet name (=2.6). Byte string, 8-bit string length
(=2.1).

Attention: The string length field is decreased by 1, if the EXTERNSHEET stores a reference to one of the
own sheets (first character is 03,). Example: The formula =Sheet2!A1 contains a reference to an
EXTERNSHEET record with the string ,<03,>Sheet2”. The string consists of 7 characters but the string
length field contains the value 6.

If a formula uses an AddIn function, a special EXTERNSHEET record will occur, followed by an
EXTERNNAME record with the name of the function.

Record EXTERNSHEET for AddIn functions, BIFF2-BIFF7:
Offset Size Contents
o} 2 3401, (01y 344 = the byte string ,#°)

* EXTERNSHEET in BIFF8

In BIFF8 the record stores a list with indexes to SUPBOOK records (list of REF structures). See =4.5.3 for
details about external references in BIFF8.

Record EXTERNSHEET, BIFF8:

Offset Size Contents
o] 2 Number of following REF structures (nm)
2 6-nm List of nm REF structures. Each REF contains the following data:
Offset Size Contents
o] 2 Index to SUPBOOK record
2 2 Index to first SUPBOOK sheet
4 2 Index to last SUPBOOK sheet

40

5.14 EXTSST - Extended SST

5.14 EXTSST - Extended SST

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFF8
00FFy

This record occurs in conjunction with the SST record (-5.33). It contains a hash table with stream offsets
to the SST record to optimize string search operations. Excel does not shorten this record if strings are
deleted from the shared string table, so the last part might contain invalid data. The stream indexes in
this record divide the SST into hash buckets containing a constant number of strings. See =4.4 for more
information about shared string tables.

Record EXTSST, BIFFS:

Offset Size Contents
o 2 Number of strings in a hash bucket, this number is >8
2 var. List of OFFSET structures. Each OFFSET contains the following data:
Offset Size Contents
o] 4 Absolute stream position of first string of this bucket
4 2 Position of first string of this bucket inside of current
record, including record header. This counter restarts
at zero inside of CONTINUE records.
6 2 Not used

5.15 FONT

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
0031y 0231y 0231y 0031y 0031y 00314

This record contains information about an used font, including character formatting.

Some of the elements occur unchanged in every BIFF version. These elements are described in the
following tables using a specific name for each element. In the description of the record structure the
names are used to reference to these tables.

5.15.1 FONT substructures

» FONT_SCRIPT - Subscript or superscript (2 bytes), BIFF5-BIFF8

Value Contents
0000« None
0001s Superscript
0002z Subscript

* FONT_UNDERLINE - Underline type (1 byte), BIFF5-BIFF8

Value Contents

00y None

014 Single

024 Double

03y Single accounting
044 Double accounting

41

5 Worksheet/Workbook Records

5.15.2 FONT record contents
Record FONT, BIFF2:

Offset Size Contents
o} 2 Height of the font (in 1/20 of a point)
2 2 Option flags:
Bit Mask Contents
o 0001y 1 = Characters are bold
1 0002y 1 = Characters are italic
2 0004y 1 = Characters are underlined
3 0008y 1 = Characters are struck out
4 var. Font name (byte string, 8-bit string length, »2.1)

Record FONT, BIFF3-BIFF4:

Offset Size Contents
o 2 Height of the font (in 1/20 of a point)
2 2 Option flags:
Bit Mask Contents
o] 0001y 1 = Characters are bold
1 0002y 1 = Characters are italic
2 0004y 1 = Characters are underlined
3 0008y 1 = Characters are struck out
4 2 Index into PALETTE record (=5.27)
6 var. Font name (byte string, 8-bit string length, =2.1)

Record FONT, BIFF5-BIFF8:

Offset Size Contents
o} 2 Height of the font (in 1/20 of a point)
2 2 Option flags:
Bit Mask Contents
1 0002y 1 = Characters are italic
3 0008y 1 = Characters are struck out
4 2 Index into PALETTE record (=5.27)
6 2 Boldness (100-1000). Standard values are 01904 (400) for normal text and
02BCy (700) for bold text.
8 2 FONT_SCRIPT - Subscript or superscript (see above)
10 1 FONT_UNDERLINE - Underline type (see above)
11 1 Font family...
12 1 Character set...
13 1 Not used
14 var. Font name: BIFF5/BIFF7: Byte string, 8-bit string length (-2.1)

BIFF8: Unicode string, 8-bit string length (-2.2)

5.16 FORMAT

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
001Ey 001Ey4 041Ey4 041Ey 041Ey4 041Ey4

2do

42

5.17 FORMULA

5.17 FORMULA

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFF8
0006y 02064 04064 00064 0006y 0006y

This record contains the token array and the result of a formula cell.

* Record contents
Record FORMULA, BIFF2:

Offset Size Contents

o 2 Index to row

2 2 Index to column
4 3 Cell attributes (=2.9)

7 8 Result of the formula (IEEE floating-point value)
15 1 0 = Do not recalculate, 1 = Recalculate always
16 var. Formula data (RPN token array, =3)

Record FORMULA, BIFF3-BIFF4:
Offset Size Contents

0] 2 Index to row

2 2 Index to column
4 2 Index to XF record (-5.37)

6 8 Result of the formula. See below for details.

14 2 Option flags:

Bit Mask Contents
0 0001y 1 = Recalculate always
1 00025 1 = Calculate on open
16 var. Formula data (RPN token array, -3)
Record FORMULA, BIFF5-BIFFS8:
Offset Size Contents

0] 2 Index to row
2 2 Index to column
4 2 Index to XF record (-5.37)

6 8 Result of the formula. See below for details.

14 2 Option flags:
Bit Mask Contents
0 0001y 1 =Recalculate always
1 0002y 1 = Calculate on open
3 0008y 1 = Part of a shared formula
16 4 Not used
20 var. Formula data (RPN token array, —»3)

* Result of the formula

Dependent on the type of value the formula returns, the result field has the following format:
Result is a numeric value:

Offset Size Contents
0 8 IEEE floating-point value

43

5 Worksheet/Workbook Records

Result is a string (the string itself follows in a STRING record, -»5.34):

Offset Size Contents
o] 1 00y (identifier for a string value)
1 5 Not used
6 2 FFFFy

Result is a boolean value:

Offset Size Contents
o] 1 01y (identifier for a boolean value)
1 1 Not used
2 1 o = FALSE, 1 = TRUE
3 3 Not used
6 2 FFFFy

Result is an error value:

Offset Size Contents
o] 1 02y (identifier for an error value)
1 1 Not used
2 1 Error code (-2.4)
3 3 Not used
6 2 FFFFy

5.18 HLINK - Hyperlink

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
01B8y

In Excel, every cell can contain only one hyperlink. Therefore, the HLINK record refers to one cell address
or a cell range where all cells contain the same hyperlink. Every hyperlink can contain a text mark and a
description that is shown in the sheet instead of the real link. Text marks are appended behind a link,
separated by the ,#“ sign. Examples for text marks are www.xyz.org#table1 or C:\example.xls#Sheet1!A1.

Inside of this record strings are stored in several formats. Sometimes occurs the character count,
otherwise the character array size (in 16-bit-character arrays the character count is half of the array size).
Furthermore some strings are zero-terminated, others not. They are stored either as 16-bit-character
arrays or as 8-bit-character arrays, independent of the characters.

44

5.18 HLINK - Hyperlink

5.18.1 Common record contents

Each HLINK record starts with the same data items and continues with special data related to the current
type of hyperlink.

Record HLINK, BIFF8:

Offset Size Contents
o] 2 Index to first row
2 2 Index to last row
4 2 Index to first column
6 2 Index to last column
8 20 Unknown byte sequence:

DOy C94 EAy 79y F9y BAy CEy 1lg
8Cy 82y 00y AAy 00y 4By ASy 0By
02y 00y 00y 004

28 4 Option flags (see below)

[32] 4 (optional, see option flags) Character count of description text, including
trailing zero word (d1)

[36] 2-dl (optional, see option flags) Character array of description text, no Unicode

string header, always 16-bit-characters, zero-terminated
Special data (-»5.18.2 and following)

[var.] 4 (optional, see option flags) Character count of the text mark, including trailing
zero word (1)
[var.] 2-t1 (optional, see option flags) Character array of the text mark without ,# sign,

no Unicode string header, always 16-bit-characters, zero-terminated

The special data parts in the following are described with relative offsets (starting again by zero). The real

description).

* Option flags
The option flags specify the following content of the record.

Bit Mask Contents
o] 000000014 0 = No link extant 1 = File link or URL
1 000000024 0 = Relative file path 1 = Absolute path or URL
2 and 4 000000144 0 = No description 1 (both bits) = Description
3 00000008y 0 = No text mark 1 = Text mark
8 000001004 o = File link or URL 1 = Network path

5.18.2 Hyperlink to a common URL

These data fields occur for links which are not local files or files in the local network. The lower 9 bits of
the option flags field must be 0.000x.xx11, (x means optional, depending on hyperlink content). The
byte sequence should be used to distinguish an URL from a file link.

Offset Size Contents

0 16 Unknown byte sequence, used as URL identifier:
EOy C9y EAy 79; F9y BAy CEy 11y
8Cy 82y 00y AAy 004 4By A9y OBy

16 4 Size of character array of the URL, including trailing zero word (ug). There are
us/2-1 characters in the following string.
20 us Character array of the URL, no Unicode string header, always 16-bit-characters,

zero-terminated

45

5 Worksheet/Workbook Records

5.18.3 Hyperlink to a local file

These data fields are for links to files on local drives. The path of the file can be complete with drive
letter (absolute) or relative to the location of the workbook. The lower 9 bits of the option flags field
must be 0.000x.xxx1,. The byte sequence should be used to distinguish an URL from a file link.

Offset Size
o 16
16 2
18 4
22 sl
22+gl 24
46+s1 4
[50+s1] 4
[54+s1] 2
[56+s1] x1

Contents

Unknown byte sequence, used as file link identifier:

03y 034 00y 00y 004 00y 00y 004

COy 00y 00y 00y 0Oy 004z 00y 46y

Directory up-level count. Each leading ,...\" in the file link is deleted and
inceases this counter.

Character count of the shortened file path and name, including trailing zero

Character array of the shortened file path and name in 8.3-DOS-format. This
field can be filled with a long file name too. No Unicode string header, always
8-bit-characters, zero-terminated.

Unknown byte sequence:

FFy FFy ADy DEy 00y 00y 00y OOyq

00y 00y 00yx 00y 00y 00y OO0y 004

00y 00y 0O0yx 00y 00y 00y OO0y 004

Size of the following file link field including string length field and additional

Unicode string header, always 16-bit-characters, not zero-terminated

5.18.4 Hyperlink to a file located in the local network

These data fields are for links to files located in the local network. The lower 9 bits of the option flags
field must be 1.000x.xx11,.

Offset Size
o 4
4 2f1

Contents
Character count of the network path and file name, including trailing zero

Character array of the network path and file name, no Unicode string header,
always 16-bit-characters, zero-terminated.

5.18.5 Hyperlink to a place in the current workbook

In this case only the text mark field is present (optional with description). Example: The URL ,#Sheet2!
B1:C2“ refers to the given range in the current workbook. The lower 9 bits of the option flags field must

be 0.000x.1x00,.

46

5.19 INTEGER

5.19 INTEGER

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFF8
00024

This record represents a cell that contains an unsigned 16-bit-integer value. If a value cannot be stored as
a 16-bit-integer, a NUMBER record (-5.26) must be written. From BIFF3 on this record is replaced by the
RK record (-5.29).

Record INTEGER, BIFF2:
Offset Size Contents
o] 2 Index to row
2 2 Index to column
4 3 Cell attributes (»2.9)
7 2 Unsigned 16-bit-integer value

5.20 IXFE - Index to XF

BIFF2z BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
0044y

This record occurs in front of every cell record (for instance BLANK, INTEGER, NUMBER, LABEL, FORMULA)
that references to an XF record (=5.37) with an index greater than 62. The XF index field of the cell
record consists only of 6 bits. The maximum value 63 is used to indicate a preceding IXFE record
containing the real XF index. See 2.9 for more details.

Record IXFE, BIFF2:

Offset Size Contents
0] 2 Index to XF record (-5.37)

5.21 LABEL

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
0004y 0204y 0204y 0204y 02044 —

This record represents a cell that contains a string. In BIFF8 it is replaced by the LABELSST record (-5.22).
Record LABEL, BIFF2:

Offset Size Contents
o] 2 Index to row
2 2 Index to column
4 3 Cell attributes (»2.9)
7 var. Byte string, 8-bit string length (-2.1)
Record LABEL, BIFF3-BIFF7:
Offset Size Contents
0] 2 Index to row
2 2 Index to column
4 2 Index to XF record (=5.37)
6 var. Byte string, 16-bit string length (-2.1)

47

5 Worksheet/Workbook Records

5.22 LABELSST

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFFS
00FDy

This record represents a cell that contains a string. It replaces the LABEL record (-»5.21) used in BIFF2-
BIFF7. See =4.4 for more information about shared string tables.
Record LABELSST, BIFFS:
Offset Size Contents

0] 2 Index to row

2 2 Index to column

4 2 Index to XF record (=5.37)

6 4 Index into SST record (=5.33)

5.23 MULBLANK - Multiple BLANK

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
- -— - O0OBEy OOBEyz OOBEgx

This record represents a cell range of empty cells. All cells are located in the same row.
Record MULBLANK, BIFF5-BIFF8:

Offset Size Contents
o 2 Index to row
2 2 Index to first column (fc)
4 2-(1g-fc+1) Array of 1¢c-fc+1 16-bit-indexes to XF records (-5.37)
var. 2 Index to last column (1¢)

5.24 MULRK - Multiple RK

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFFS8
- -—- -—- 00BDy 00BDy OOBDg

This record represents a cell range containing RK value cells. All cells are located in the same row.
Record MULRK, BIFF5-BIFF8:

Offset Size Contents

o] 2 Index to row

2 2 Index to first column (fc)

4 6-(1c-fc+1) Array of 1c-fc+1 XF/RK structures. Each XF/RK contains:

Offset Size Contents
o 2 Index to XF record (-5.37)
2 4 RK value (»2.3)
var. 2 Index to last column (1¢)

48

5.25 NAME

5.25 NAME

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFF8
00184 02184 02184 00184 00184 00184

This record contains the name and the token array of an internal defined name.
Record NAME, BIFF2:

Offset Size Contents
0 1 Option flags:
Bit Mask Contents
1 02y 1 = Function macro or command macro
2 04y 1 = Complex function (array formula or user defined)
1 1 If name is function macro or command macro (see option flags above):
01, = Function macro, 02, = Command macro
2 1 Keyboard shortcut
3 1 Length of the name (character count) (1n)
4 Size of the formula data (RPN token array) (sz)
5 in Character array of the name
5+1n 87 Formula data (RPN token array without size field, »3)
5+ln+sz 1 Duplicate of the formula data size field (sz)
Record NAME, BIFF3-BIFF4:
Offset Size Contents
0 2 Option flags:
Bit Mask Contents
o] 0001y 1 = Name is hidden
1 0002y 1 = Name is a function
2 0004y 1 = Name is a command
3 0008y 1 = Function macro or command macro
4 0010z 1 = Complex function (array formula or user defined)
5 0020y 1 = Built-in name (see table below)
11-6 OFCOs BIFF3: Not used; BIFF4: Index to function group
2 1 Keyboard shortcut
3 Length of the name (character count) (1n)
4 2 Size of the formula data (RPN token array) (sz)
6 in Character array of the name
6+1ln sz Formula data (RPN token array without size field, -»3)

49

5 Worksheet/Workbook Records

Record NAME, BIFF5/BIFF7:

Offset

Size
2

R R R R NNNRR

Record NAME, BIFFS:

50

Offset

var.
var.
var.
var.
var.

Size
2

R R R R NNDNERR

Contents
Option flags:
Bit Mask Contents
11-0 OFFFy Equal to BIFF4 (see table above)
12 1000s 1 = Name contains binary data

Keyboard shortcut

Unused
o = Global name, otherwise index to sheet (one-based)

Character array of the name

Formula data (RPN token array without size field, =3)
Character array of menu text

Character array of description text

Character array of help topic text

Character array of status bar text

Contents

Option flags: Equal to BIFF5/BIFF7 (see table above)
Keyboard shortcut

Length of the name (character count)

Unused

0 = Global name, otherwise index to sheet (one-based)
Length of menu text (character count)

Length of description text (character count)

Length of help topic text (character count)

Length of status bar text (character count)

Name (Unicode string without length field, »2.2)
Formula data (RPN token array without size field, »3)
Menu text (Unicode string without length field, »2.2)
Description text (Unicode string without length field, »2.2)
Help topic text (Unicode string without length field, »2.2)
Status bar text (Unicode string without length field, »2.2)

e Built-in names

5.25 NAME

From BIFF3 on only an index to a built-in names is stored. If bit 5 of the option flags field is set, the

name string contains only one character with this index.
Built-in index Built-In name

004 Consolidate_Area
01y Auto_Open

02y Auto_Close

03y Extract

04y Database

05y Criteria

06y Print_Area

074 Pint_Titles

084 Recorder

09y Data_Form

0Ax Auto_Activate
0By Auto_Deactivate
0Cy Sheet_Title

0Dy BIFF3-BIFF4: Not used; BIFF5-BIFF8: Autofilter

5.26 NUMBER

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
0003y 0203y 0203y 0203y 0203y 02034

This record represents a cell that contains a floating-point value.
Record NUMBER, BIFF2:

Offset Size Contents
o] 2 Index to row
2 2 Index to column
4 3 Cell attributes (»2.9)
7 8 IEEE floating-point value
Record NUMBER, BIFF3-BIFFS:
Offset Size Contents
0] 2 Index to row
2 2 Index to column
4 2 Index to XF record (=5.37)
6 8 IEEE floating-point value

51

5 Worksheet/Workbook Records

5.27 PALETTE

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFFS
-— 0092y 00924 00924 00924 00924

This record contains the definition of all colors available for cell and object formatting.
Record PALETTE, BIFF3-BIFF8:

Offset Size Contents
o] 2 Number of following colors (nm)
2 4-nm List of nm colors. Each color contains:
Offset Size Contents

o} 1 Red component of the color
1 1 Green component of the color
2 1 Blue component of the color
3 1 Not used

5.28 PASSWORD

BIFF2 BIFF3 BIFFq BIFF5 BIFF7 BIFFS
0013y 0013y 0013y 0013y 0013y 0013y

This record stores a 16-bit hash value for a sheet or workbook protection password.

Offset Size Contents
o} 2 16-bit hash value of the password

This is the algorithm to create the hash value from a given password:

» The ASCII values of all characters are rotated left with a number of digits depending on the character
position (first character is rotated left 1 bit, second character 2 bits, and so on). There is a space of 15
bits available for rotation (bit 15 jumps to bit o, bit 16 jumps to bit 1 and so on).

* All rotated characters are combined using XOR operation.
* The number of characters is added using XOR operation.
* The constant CE4B, is added using XOR operation.
Example: The password is ,,abcdefghij” (10 characters).

Character ASCII Shifted Rotated
a 61y 000000C2y 00C2y4
b 62y 00000188y 0188y
C 63y 00000318y 0318y
d 64y 00000640y 0640y
e 65y 00000CAOQy 0CAOy
f 66y 00001980y 1980y
g 67y 00003380y 3380y
h 68y 00006800y 6800y
i 69 0000D200y 5201y
j 6Ay 0001A800y 2803y

All the rotated values and the number of characters 0002, and the constant CE4B, result in the hash
value FEF1,.

52

5.29 RK

5.29 RK

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFF8
- 027Ey4 027Ey4 027Ey4 027Ey4 027Ey4

This record represents a cell that contains an RK value (encoded integer or floating-point value). If a
floating-point value cannot be encoded to an RK value, a NUMBER record (-5.26) must be written. This
record replaces the record INTEGER (=5.19) written in BIFF2.

Record RK, BIFF3-BIFFS:

Offset Size Contents
o] 2 Index to row
2 2 Index to column
4 2 Index to XF record (-5.37)
6 4 RK value (=2.3)

5.30 SCREENTIP

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
0800y

This record contains the cell range and text for a screen tip. It occurs in conjunction with the HLINK
record for hyperlinks (-5.18).

Record SCREENTIP, BIFF8:

Offset Size Contents
o 2 0800y (repeated record ID)
2 2 Index to first row
4 2 Index to last row
6 2 Index to first column
8 2 Index to last column

10 var. Character array of the screen tip, no Unicode string header, always 16-bit-
characters, zero-terminated

5.31 SHEETHDR

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFF8
008Fy

This record occurs only in BIFF4 workbook files. It precedes a substream for a sheet (delimited by a BOF
and a EOF record) and contains the byte length of the substream and the sheet name. Adding the
substream length to the stream position of the following BOF record gives the position of the next
SHEETHDR record. See -4.2 for details about the BIFF4 workbook stream.

Record SHEETHDR, BIFF4:

Offset Size Contents
0 4 Byte length of the following sheet substream
4 var. Name of the sheet (byte string, 8-bit string length, »2.1)

53

5 Worksheet/Workbook Records

5.32 SHEETSOFFSET

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFFS
008Ey

This record occurs only in BIFF4 workbook files. It is located in the workbook globals section and
contains the stream position of the first SHEETHDR record (=5.31). See =4.2 for details about the BIFF4
workbook stream.

Record SHEETSOFFSET, BIFF4:
Offset Size Contents
o 4 Stream position of the first SHEETHDR record (-5.31)

5.33 SST - Shared String Table

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
00FCy

This record contains a list of all strings used anywhere in the workbook. Each string occurs only one
time. The workbook uses indexes into the list to reference to strings. See -4.4 for more information.

Record SST, BIFFS:

Offset Size Contents
o 4 Total number of strings in the workbook (see below)
4 4 Number of following strings (nm)
8 var. List of nm Unicode strings, 16-bit string length (=2.2)

The first field of the SST record counts the total occurrence of strings in the workbook. For instance, the
string ,AAA” is used 3 times and the string ,BBB“ is used 2 times. The first field contains 5 and the
second field contains 2, followed by the two strings.

5.34 STRING

BIFF2 BIFF3 BIFF4 BIFF5 BIFF7 BIFF8
00074 0207y 0207y 0207y 0207y 02074

This record stores the result of a string formula. It occurs directly after a string formula (-5.17).
Record STRING, BIFF2:

Offset Size Contents
o} var. Byte string, 8-bit string length (=2.1)
Record STRING, BIFF3-BIFF7:
Offset Size Contents
o} var. Byte string, 16-bit string length (-+2.1)

In BIFF8 files the whole record is omitted, if the result is an empty string.
Record STRING, BIFFS:

Offset Size Contents
o} var. Unicode string with at least 1 character, 16-bit string length (=2.2)

54

5.35 SUPBOOK - External Workbook

5.35 SUPBOOK - External Workbook

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFF8
01AEy

This record mainly stores the name of an external document and a list of sheet names inside of this
document. Furthermore it is used to store names of documents for DDE and OLE object links or to
indicate an internal 3D reference or an AddIn function. See »4.5.3 for details about external references in
BIFFS8.

5.35.1 External references

A SUPBOOK record for external references stores the name of the document and a list of sheet names.
Record SUPBOOK for external references, BIFFS:

Offset Size Contents
0] 2 Number of sheet names (nm)
2 var. Encoded document name without sheet name (»2.6.1). Unicode string, 16-bit
string length (-2.2).
var. var. List of nm sheet names (Unicode strings with 16-bit string length, »2.2)

5.35.2 Internal references

In each file occurs a SUPBOOK that is used for internal 3D references. It stores the number of sheets of
the own document.

Record SUPBOOK for 3D references, BIFFS:

Offset Size Contents
0 2 Number of sheets in this document
2 2 0401y

5.35.3 AddIn functions

AddIn function names are stored in EXTERNNAME records following this SUPBOOK record.
Record SUPBOOK for AddIn functions, BIFF8:

Offset Size Contents
0 2 0001y
2 2 3A01y4

5.35.4 DDE links, OLE object links

The SUPBOOK record of a DDE link or an OLE object link contains the name of the server application
(DDE) or the class name (OLE) and the name of a source document. These names are encoded in one
string.

Record SUPBOOK for DDE links and OLE object links, BIFF8:

Offset Size Contents
o) 2 0000y
2 var. Encoded source document name (=2.6.2). Unicode string, 16-bit string length
(=2.2).

55

5 Worksheet/Workbook Records

5.36 XCT - CRN Count

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFFS
-— 00594 00594 00594 00594 00594

This record stores the number of immediately following CRN records. These records are used to store the
cell contents of external references. See =4.5 for details about of external references.

Record XCT, BIFF3-BIFF7:
Offset Size Contents
o} 2 Number of following CRN records

Record XCT, BIFFS:

Offset Size Contents
o] 2 Number of following CRN records
2 2 Index to sheet table of the involved SUPBOOK record (=5.35)

5.37 XF - Extended Format

BIFFz BIFF3 BIFFq BIFF5 BIFF7 BIFFS
00434 02434 04434 00EOy4 00EOQOy 00EOQy

This record contains formatting information for cells, rows, columns or styles.

From BIFF3 on, some of the elements occur unchanged in every BIFF version. These elements are
described in the following using a specific name for each element. In the description of the record
structure the names are used to reference to these tables.

5.37.1 XF substructures

* XF_TYPE_PROT - XF type and cell protection (3 bits), BIFF3-BIFF8
These 3 bits are part of a specific data byte.

Bit Mask Contents
01y 1 = Cell is locked
1 02y 1 = Formula is hidden

04y 0 = Cell XF; 1 = Style XF

* XF_USED_ATTRIB - Attributes used from parent style XF (1 byte), BIFF3-BIFF8

In this byte, each bit describes the validity of a specific attribute. In cell XFs an unset bit means the
attribute of the parent style XF is used, a set bit means the attribute of this XF is used. In style XFs an
unset bit means the attribute setting is valid, a set bit means the attribute should be ignored.

Bit Mask Contents
2 04y Flag for number format
3 084 Flag for font
4 104 Flag for alignment, text wrap and rotation
5 20y Flag for border lines
6 404 Flag for background area style
7 80y Flag for cell protection (cell locked and formula hidden)

56

5.37 XF — Extended Format

» XF_HOR_ALIGN - Horizontal alignment (3 bits), BIFF2-BIFF8

The horizontal alignment consists of 3 bits and is part of a specific data byte.
Value Horizontal alignment

00y General
01y Left

02y Centered
034 Right
04y Filled

05: Justified (BIFF3-BIFF8)
06y Centered across selection (BIFF3-BIFF8)

* XF_VERT_ALIGN - Vertical alignment (2 bits), BIFF4-BIFF8

The vertical alignment consists of 2 bits and is part of a specific data byte. Vertical alignment is not
available in BIFF2 and BIFF3.

Value Vertical alignment

00y Left
01y Centered
024 Right

03y Justified (BIFF5-BIFF8)

* XF_ORIENTATION - Text orientation (2 bits), BIFF4-BIFF7

In the BIFF versions BIFF4-BIFF7, text can be rotated in steps of go-degrees or stacked. The orientation
mode consists of 2 bits and is part of a specific data byte. In BIFF8 a rotation angle occurs instead of
these flags.

Value Text orientation

00x Not rotated

01y Letters are stacked top-to-bottom, but not rotated
02x Text is rotated 90 degrees counterclockwise

03x Text is rotated 9o degrees clockwise

* XF_ROTATION - Text rotation angle (1 byte), BIFF8

Value Text rotation

0 Not rotated
1-90 1 deg. - 90 deg. counterclockwise
91-180 1 deg. - 90 deg. clockwise
255 Letters are stacked top-to-bottom, but not rotated

57

5 Worksheet/Workbook Records

* XF_BORDER_34 - Cell border style (4 bytes), BIFF3-BIFF4

Cell borders contain a line style and a line color for each line of the border.

Bit Mask Contents

2-0 00000007x Top line style (=2.7)

7-3 000000F8y Index into PALETTE record for top line color (=5.27)
10-8 000007004 Left line style
15-11 0000F800y Index into PALETTE record for left line color
18-16 000700004 Bottom line style
23-19 00F80000y Index into PALETTE record for bottom line color
26-24 070000005 Right line style
31-27 F8000000y Index into PALETTE record for right line color

» XF_AREA_34 - Cell background area style (2 bytes), BIFF3-BIFF4

A cell background area style contains an area pattern and a foreground and background color.

Bit Mask Contents

5-0 003Fy Fill pattern (-»2.8)

10-6 07C0x Index into PALETTE record for pattern foreground (-5.27)
15-11 F800y Index into PALETTE record for pattern background

5.37.2 XF record contents

Record XF, BIFF2:

Offset Size Contents
o} 1 Index to FONT record (=5.15)
1 1 Not used
2 1 Bit Mask Contents
5-0 3Fy Index to FORMAT record (-5.16)
6 40y 1 = Cell is locked
7 80y 1 = Formula is hidden
3 1 Bit Mask Contents
2-0 07y XF_HOR_ALIGN - Horizontal alignment (see above)
3 08y 1 = Cell has left black border
4 10y 1 = Cell has right black border
5 20y 1 = Cell has top black border
6 40y 1 = Cell has bottom black border
7 80y 1 = Cell has shaded background

58

Record XF, BIFF3:

Offset Size
o 1
1 1
2 1
3 1
4 2
6 2
8 4

Record XF, BIFF4:

Offset Size
o) 1
1 1
2 2
4 1
5 1
6 2
8 4

Contents

5.37 XF — Extended Format

Index to FONT record (-5.15)

Index to FORMAT record (=5.16)

XF_TYPE_PROT - XF type and cell protection (see above)
XF_USED_ATTRIB - Used attributes (see above)

Bit Mask
2-0 0007y

3 0008y
15-4 FFFOy4

Contents

XF_HOR_ALIGN - Horizontal alignment (see above)
1 = Text is wrapped at right border

Index to parent style XF (always FFFy in style XFs)

XF_AREA_34 - Cell background area (see above)
XF_BORDER_34 - Cell border lines (see above)

Contents

Index to FONT record (-5.15)
Index to FORMAT record (-5.16)

Bit Mask
2-0 00074
15-4 FFFOy
Bit Mask
2-0 074
3 08
54 30s
7-6 COy

Contents

XF_TYPE_PROT - XF type, cell protection (see above)
Index to parent style XF (always FFFy in style XFs)
Contents

XF_HOR_ALIGN - Horizontal alignment (see above)
1 = Text is wrapped at right border

XF_VERT_ALIGN - Vertical alignment (see above)
XF_ORIENTATION - Text orientation (see above)

XF_USED_ATTRIB - Used attributes (see above)
XF_AREA_34 - Cell background area (see above)
XF_BORDER_34 - Cell border lines (see above)

59

5 Worksheet/Workbook Records

Record XF, BIFF5/BIFF7:

60

Offset
o)
2

4

12

Size
2
2
2

Contents

Index to FONT record (-=5.15)

Index to FORMAT record (-5.16)

Bit
2-0
15-4
Bit
2-0
3
54
Bit
1-0
7-2

Bit
6-0
13-7
21-16
24-22
31-25
Bit
2-0
53
8-6
15-9
22-16
29-23

Mask
00074
FFFOy

Mask

Contents
XF_TYPE_PROT - XF type, cell protection (see above)
Index to parent style XF (always FFFy in style XFs)
Contents

074 XF_HOR_ALIGN - Horizontal alignment (see above)
08y 1 = Text is wrapped at right border
304 XF_VERT_ALIGN - Vertical alignment (see above)

Mask

Contents

03y XF_ORIENTATION - Text orientation (see above)
FCy XF_USED_ATTRIB - Used attributes (see above)
Cell border lines and background area:

Mask
0000007Fy
000003F8y
003F0000y
01C00000y4
FE0O00000y4

Mask
00000007y
00000038y
000001CO0y
0O00O0FEOQOy
007F0000y
3F800000y

Contents

Index into PALETTE for pattern foreground
Index into PALETTE for pattern background
Fill pattern (-»2.8)

Bottom line style (»2.7)

Index into PALETTE for bottom line color
Contents

Top line style (=2.7)

Left line style

Right line style

Index into PALETTE for top line color
Index into PALETTE for left line color
Index into PALETTE for right line color

Record XF, BIFFS:

Offset Size
o 2
2 2
4 2
6 1
7 1
8
9 1

10 4
14 4
18 2

Contents

Index to FONT record (-5.15)

5.37 XF — Extended Format

Index to FORMAT record (=5.16)

Bit
2-0
15-4
Bit
2-0
3
5-4

Bit
3-0
4
5
Bit
7-2

Bit
3-0
74
11-8
15-12
22-16
29-23
30
31
Bit
6-0
13-7
20-14
24-21
31-26
Bit
6-0
13-7

Mask
00074
FFFOy

Mask

Contents

XF_TYPE_PROT - XF type, cell protection (see above)
Index to parent style XF (always FFFy in style XFs)
Contents

07x XF_HOR_ALIGN - Horizontal alignment (see above)
08y 1 = Text is wrapped at right border

304 XF_VERT_ALIGN - Vertical alignment (see above)
XF_ROTATION: Text rotation angle (see above)

Mask Contents
OFx Indent level
104 1 = Shrink content to fit into cell
204 1 = Cell is part of a merged range
Mask Contents

FCy XF_USED_ATTRIB - Used attributes (see above)
Cell border lines and background area:

Mask
0000000Fy
0O00000FO0y
00000F00y
0O00O0F000y
007F0000y4
3F800000y4
400000004
80000000y

Mask
0000007Fy
00003F80y4
001FCO000y4
01E00000y
FC000000y4

Mask

007Fy

3F80y

Contents

Left line style (=2.7)

Right line style

Top line style

Bottom line style

Index into PALETTE for left line color

Index into PALETTE for right line color

1 = Diagonal line from top left to right bottom
1 = Diagonal line from bottom left to right top
Contents

Index into PALETTE for top line color

Index into PALETTE for bottom line color
Index into PALETTE for diagonal line color
Diagonal line style (»2.7)

Fill pattern (»2.8)

Contents

Index into PALETTE for pattern foreground
Index into PALETTE for pattern background

61

6 Drawing Objects, Escher Layer

6 Drawing Objects, Escher Layer

2do

62

7 Charts

7 Charts

2do

63

8 PivotTables

8 PivotTables

2do

64

9 Change Tracking

9 Change Tracking

2do

65

.EXE Executable-File Header Format (3.1)

An executable (.EXE) file for the Microsoft Windows operating system contains a combination of code and
data or a combination

of code, data, and resources. The executable file also contains two headers: an MS-DOS header and a
Windows header. The

next two sections describe these headers; the third section describes the code and data contained in a
Windows executable file.

MS-DOS Header

The MS-DOS (old-style) executable-file header contains four distinct parts: a collection of header
information (such as the

signature word, the file size, and so on), a reserved section, a pointer to a Windows header (if one
exists), and a stub program.

The following illustration shows the MS-DOS executable-file header:

If the word value at offset 18h is 40h or greater, the word value at 3Ch is typically an offset to a
Windows header. Applications

must verify this for each executable-file header being tested, because a few applications have a
different header style.

MS-DOS uses the stub program to display a message if Windows has not been loaded when the user attempts
to run a

program.

For more information about the MS-DOS executable-file header, see the Microsoft MS-DOS Programmer's
Reference

(Redmond, Washington: Microsoft Press, 1991).

Windows Header

The Windows (new-style) executable-file header contains information that the loader requires for
segmented executable files.

This information includes the linker version number, data specified by the linker, data specified by the
resource compiler, tables

of segment data, tables of resource data, and so on. The following illustration shows the Windows
executable-file header:

The following sections describe the entries in the Windows executable-file header.

Information Block

The information block in the Windows header contains the linker version number, the lengths of various
tables that further

describe the executable file, the offsets from the beginning of the header to the beginning of these
tables, the heap and stack

sizes, and so on. The following list summarizes the contents of the header information block (the
locations are relative to the

beginning of the block):

Location Description

00h Specifies the signature word. The low byte contains "N" (4Eh) and the high byte contains "E"
(45h) .

02h Specifies the linker version number.

03h Specifies the linker revision number.

04h Specifies the offset to the entry table (relative to the beginning of the header).

06h Specifies the length of the entry table, in bytes.

08h Reserved.

0Ch Specifies flags that describe the contents of the executable file. This value can be one or more

of the following bits:
Bit Meaning

0 The linker sets this bit if the executable-file format is SINGLEDATA. An executable file with
this format

contains one data segment. This bit is set if the file is a dynamic-link library (DLL).

1 The linker sets this bit if the executable-file format is MULTIPLEDATA. An executable file with
this format

contains multiple data segments. This bit is set if the file is a Windows application.

If neither bit 0 nor bit 1 is set, the executable-file format is NOAUTODATA. An executable file with this
format

does not contain an automatic data segment.

2 Reserved.

3 Reserved.
8

Reserved.
9 Reserved.
11 If this bit is set, the first segment in the executable file contains code that loads the
application.
13 If this bit is set, the linker detects errors at link time but still creates an executable file.
14 Reserved.
15 If this bit is set, the executable file is a library module.

If bit 15 is set, the CS:IP registers point to an initialization procedure called with the value in the
AX register
equal to the module handle. The initialization procedure must execute a far return to the caller. If the

procedure is successful, the value in AX is nonzero. Otherwise, the value in AX is zero.

The value in the DS register is set to the library's data segment if SINGLEDATA is set. Otherwise, DS is
set

to the data segment of the application that loads the library.

OEh Specifies the automatic data segment number. (OEh is zero if the SINGLEDATA and MULTIPLEDATA bits
are

cleared.)

10h Specifies the initial size, in bytes, of the local heap. This value is zero if there is no local
allocation.

12h Specifies the initial size, in bytes, of the stack. This value is zero if the SS register value

does not equal the DS

register value.

14h Specifies the segment:offset value of CS:IP.
18h Specifies the segment:offset value of SS:SP.

The value specified in SS is an index to the module's segment table. The first entry in the segment table

corresponds to segment number 1.

If SS addresses the automatic data segment and SP is zero, SP is set to the address obtained by adding
the size of

the automatic data segment to the size of the stack.

1Ch Specifies the number of entries in the segment table.

1Eh Specifies the number of entries in the module-reference table.

20h Specifies the number of bytes in the nonresident-name table.

22h Specifies a relative offset from the beginning of the Windows header to the beginning of the
segment table.

24h Specifies a relative offset from the beginning of the Windows header to the beginning of the
resource table.

26h Specifies a relative offset from the beginning of the Windows header to the beginning of the
resident-name table.

28h Specifies a relative offset from the beginning of the Windows header to the beginning of the
module-reference table.

2Ah Specifies a relative offset from the beginning of the Windows header to the beginning of the
imported-name table.

2Ch Specifies a relative offset from the beginning of the file to the beginning of the nonresident-

name table.

30h Specifies the number of movable entry points.

32h Specifies a shift count that is used to align the logical sector. This count is log2 of the
segment sector size. It is

typically 4, although the default count is 9. (This value corresponds to the /alignment [/a] linker
switch. When the

linker command line contains /a:16, the shift count is 4. When the linker command line contains /a:512,
the shift

count is 9.)

34h Specifies the number of resource segments.

36h Specifies the target operating system, depending on which bits are set:
Bit Meaning

0 Operating system format is unknown.

1 Reserved.

2 Operating system is Microsoft Windows.

3 Reserved.

4 Reserved.

37h Specifies additional information about the executable file. It can be one or more of the

following values:

Bit Meaning

1 If this bit is set, the executable file contains a Windows 2.x application that runs in version
3.x protected

mode.

2 If this bit is set, the executable file contains a Windows 2.x application that supports
proportional fonts.

3 If this bit is set, the executable file contains a fast-load area.

38h Specifies the offset, in sectors, to the beginning of the fast-load area. (Only Windows uses this
value.)

3Ah Specifies the length, in sectors, of the fast-load area. (Only Windows uses this value.)

3Ch Reserved.

3Eh Specifies the expected version number for Windows. (Only Windows uses this value.)

Segment Table

The segment table contains information that describes each segment in an executable file. This
information includes the

segment length, segment type, and segment-relocation data. The following list summarizes the values found
in the segment

table (the locations are relative to the beginning of each entry):

Location Description

00h Specifies the offset, in sectors, to the segment data (relative to the beginning of the file). A
value of zero means no

data exists.

02h Specifies the length, in bytes, of the segment, in the file. A value of zero indicates that the
segment length is 64K,

unless the selector offset is also zero.

04h Specifies flags that describe the contents of the executable file. This value can be one or more
of the following:

Bit Meaning

0 If this bit is set, the segment is a data segment. Otherwise, the segment is a code segment.

1 If this bit is set, the loader has allocated memory for the segment.

2 If this bit is set, the segment is loaded.

3 Reserved.

4 If this bit is set, the segment type is MOVABLE. Otherwise, the segment type is FIXED.

5 If this bit is set, the segment type is PURE or SHAREABLE. Otherwise, the segment type is IMPURE
or

NONSHAREABLE.

6 If this bit is set, the segment type is PRELOAD. Otherwise, the segment type is LOADONCALL.

7 If this bit is set and the segment is a code segment, the segment type is EXECUTEONLY. If this

bit is set
and the segment is a data segment, the segment type is READONLY.

8 If this bit is set, the segment contains relocation data.

9 Reserved.

10 Reserved.

11 Reserved.

12 If this bit is set, the segment is discardable.

13 Reserved.

14 Reserved.

15 Reserved.

06h Specifies the minimum allocation size of the segment, in bytes. A value of zero indicates that

the minimum allocation
size is 64K.

Resource Table

The resource table describes and identifies the location of each resource in the executable file. The
table has the following form:

WORD rscAlignShift;
TYPEINFO rscTypes|[];

WORD rscEndTypes;
BYTE rscResourceNames|[];
BYTE rscEndNames;

Following are the members in the resource table:

rscAlignShift Specifies the alignment shift count for resource data. When the shift count is used as an
exponent of 2,

the resulting value specifies the factor, in bytes, for computing the location of a resource in the
executable file.

rscTypes Specifies an array of TYPEINFO structures containing information about resource types.
There must

be one TYPEINFO structure for each type of resource in the executable file.

rscEndTypes Specifies the end of the resource type definitions. This member must be zero.
rscResourceNames Specifies the names (if any) associated with the resources in this table. Each
name is stored as

consecutive bytes; the first byte specifies the number of characters in the name.

rscEndNames Specifies the end of the resource names and the end of the resource table. This member
must be

zero.

Type Information

The TYPEINFO structure has the following form:

typedef struct _TYPEINFO {

WORD rtTypelD;

WORD rtResourceCount;
DWORD rtReserved;
NAMEINFO rtNameInfol[];

} TYPEINFO;

Following are the members in the TYPEINFO structure:

rtTypeID Specifies the type identifier of the resource. This integer value is either a resource-
type value or an offset

to a resource-type name. If the high bit in this member is set (0x8000), the value is one of the
following

resource-type values:

Value Resource type

RT_ACCELERATOR Accelerator table

RT_ BITMAP Bitmap
RT_CURSOR Cursor
RT_DIALOG Dialog box
RT_FONT Font component
RT_FONTDIR Font directory

RT_GROUP_CURSOR Cursor directory
RT_GROUP_ICON Icon directory
RT_ICON Icon

RT_MENU Menu

RT_RCDATA Resource data
RT_STRING String table

If the high bit of the value in this member is not set, the value represents an offset, in bytes relative
to the
beginning of the resource table, to a name in the rscResourceNames member.

rtResourceCount Specifies the number of resources of this type in the executable file.

rtReserved Reserved.

rtNameInfo Specifies an array of NAMEINFO structures containing information about individual
resources. The

rtResourceCount member specifies the number of structures in the array.

Name Information

The NAMEINFO structure has the following form:

typedef struct _NAMEINFO {
WORD rnOffset;
WORD rnLength;
WORD rnFlags;
WORD rnID;
WORD rnHandle;
WORD rnUsage;
} NAMEINFO;

Following are the members in the NAMEINFO structure:

rnOffset Specifies an offset to the contents of the resource data (relative to the beginning of
the file). The offset is in terms of

alignment units specified by the rscAlignShift member at the beginning of the resource table.

rnLength Specifies the resource length, in bytes.

rnFlags Specifies whether the resource is fixed, preloaded, or shareable. This member can be one or more
of the following

values:

Value Meaning

0x0010 Resource is movable (MOVEABLE). Otherwise, it is fixed.
0x0020 Resource can be shared (PURE).
0x0040 Resource is preloaded (PRELOAD). Otherwise, it is loaded on demand.

rnID Specifies or points to the resource identifier. If the identifier is an integer, the high bit is
set (8000h). Otherwise, it is an

offset to a resource string, relative to the beginning of the resource table.

rnHandle Reserved.

rnUsage Reserved.

Resident-Name Table

The resident-name table contains strings that identify exported functions in the executable file. As the
name implies, these strings

are resident in system memory and are never discarded. The resident-name strings are case-sensitive and
are not

null-terminated. The following list summarizes the values found in the resident-name table (the locations
are relative to the

beginning of each entry):

Location Description

00h Specifies the length of a string. If there are no more strings in the table, this value is zero.
0lh - xxh Specifies the resident-name text. This string is case-sensitive and is not null-
terminated.

xxh + 01lh Specifies an ordinal number that identifies the string. This number is an index into the

entry table.
The first string in the resident-name table is the module name.
Module-Reference Table

The module-reference table contains offsets for module names stored in the imported-name table. Each
entry in this table is 2
bytes long.

Imported-Name Table

The imported-name table contains the names of modules that the executable file imports. Each entry
contains two parts: a single

byte that specifies the length of the string and the string itself. The strings in this table are not
null-terminated.

Entry Table

The entry table contains bundles of entry points from the executable file (the linker generates each
bundle). The numbering

system for these ordinal values is l-based--that is, the ordinal value corresponding to the first entry
point is 1.

The linker generates the densest possible bundles under the restriction that it cannot reorder the entry
points. This restriction is

necessary because other executable files may refer to entry points within a given bundle by their ordinal
values.

The entry-table data is organized by bundle, each of which begins with a 2-byte header. The first byte of
the header specifies the

number of entries in the bundle (a value of 00h designates the end of the table). The second byte
specifies whether the

corresponding segment is movable or fixed. If the value in this byte is O0FFh, the segment is movable. If
the value in this byte is

OFEh, the entry does not refer to a segment but refers, instead, to a constant defined within the module.
If the value in this byte is

neither O0FFh nor OFEh, it is a segment index.

For movable segments, each entry consists of 6 bytes and has the following form:
Location Description
00h Specifies a byte value. This value can be a combination of the following bits:

Bit(s) Meaning

0 If this bit is set, the entry is exported.
1 If this bit is set, the segment uses a global (shared) data segment.
3-7 If the executable file contains code that performs ring transitions, these bits specify the

number of words
that compose the stack. At the time of the ring transition, these words must be copied from one ring to
the

other.

0lh Specifies an int 3fh instruction.
03h Specifies the segment number.

04h Specifies the segment offset.

For fixed segments, each entry consists of 3 bytes and has the following form:
Location Description
00h Specifies a byte value. This value can be a combination of the following bits:

Bit(s) Meaning

0 If this bit is set, the entry is exported.

1 If this bit is set, the entry uses a global (shared) data segment. (This may be set only for
SINGLEDATA

library modules.)

3-7 If the executable file contains code that performs ring transitions, these bits specify the

number of words

that compose the stack. At the time of the ring transition, these words must be copied from one ring to
the

other.

0lh Specifies an offset.
Nonresident-Name Table

The nonresident-name table contains strings that identify exported functions in the executable file. As
the name implies, these

strings are not always resident in system memory and are discardable. The nonresident-name strings are
case-sensitive; they

are not null-terminated. The following list summarizes the values found in the nonresident-name table
(the specified locations are

relative to the beginning of each entry):

Location Description

00h Specifies the length, in bytes, of a string. If this byte is 00h, there are no more strings in
the table.

0lh - xxh Specifies the nonresident-name text. This string is case-sensitive and is not null-
terminated.

xx + 01h Specifies an ordinal number that is an index to the entry table.

The first name that appears in the nonresident-name table is the module description string (which was
specified in the
module-definition file).

Code Segments and Relocation Data

Code and data segments follow the Windows header. Some of the code segments may contain calls to
functions in other

segments and may, therefore, require relocation data to resolve those references. This relocation data is
stored in a relocation

table that appears immediately after the code or data in the segment. The first 2 bytes in this table
specify the number of

relocation items the table contains. A relocation item is a collection of bytes specifying the following
information:

Address type (segment only, offset only, segment and offset)

Relocation type (internal reference, imported ordinal, imported name)
Segment number or ordinal identifier (for internal references)
Reference-table index or function ordinal number (for imported ordinals)
Reference-table index or name-table offset (for imported names)

Each relocation item contains 8 bytes of data, the first byte of which specifies one of the following
relocation-address types:

Value Meaning

Low byte at the specified offset
16-bit selector
32-bit pointer
16-bit offset
1 48-bit pointer
3 32-bit offset

== 0w o

The second byte specifies one of the following relocation types:
Value Meaning

Internal reference
Imported ordinal
Imported name
OSFIXUP

w N = o

The third and fourth bytes specify the offset of the relocation item within the segment.

If the relocation type is imported ordinal, the fifth and sixth bytes specify an index to a module's
reference table and the seventh

and eighth bytes specify a function ordinal value.

If the relocation type is imported name, the fifth and sixth bytes specify an index to a module's
reference table and the seventh and

eighth bytes specify an offset to an imported-name table.

If the relocation type is internal reference and the segment is fixed, the fifth byte specifies the
segment number, the sixth byte is

zero, and the seventh and eighth bytes specify an offset to the segment. If the relocation type is
internal reference and the segment

is movable, the fifth byte specifies O0FFh, the sixth byte is zero; and the seventh and eighth bytes
specify an ordinal value found in

the segment's entry table.

.EXE - DOS EXE File Structure
Offset Size Description

00 word "MZz" - Link file .EXE signature (Mark Zbikowski?)

02 word length of image mod 512

04 word size of file in 512 byte pages

06 word number of relocation items following header

08 word size of header in 16 byte paragraphs, used to locate
the beginning of the load module

0A word min # of paragraphs needed to run program

0ocC word max # of paragraphs the program would like

0E word offset in load module of stack segment (in paras)

10 word initial SP value to be loaded

12 word negative checksum of pgm used while by EXEC loads pgm

14 word program entry point, (initial IP value)

16 word offset in load module of the code segment (in paras)

18 word offset in .EXE file of first relocation item

1A word overlay number (0 for root program)

- relocation table and the program load module follow the header

- relocation entries are 32 bit values representing the offset
into the load module needing patched

- once the relocatable item is found, the CS register is added to
the value found at the calculated offset

Registers at load time of the EXE file are as follows:

AX: contains number of characters in command tail, or 0

BX:CX 32 bit value indicating the load module memory size

DX zZero

SS:SP set to stack segment if defined else, SS = CS and
SP=FFFFh or top of memory.

DS set to segment address of EXE header

ES set to segment address of EXE header

CS:IP far address of program entry point, (label on "END"
statement of program)

GGT

GERBER Cutter data...... some call it ISO Standard when they create there
code and don't want to call it Gerber in order not to make any false
impression and to boost GGT's sales......

Gerber is extremely reluctant to cooperate - unless you sell their equipment
and you have a non-disclosure agreement.

This format was invented in the late 60s !
Quote:

TABLE 2-1. SUMMARY OF INPUT DATA CODES

Input Code Function

A Knife up (same as M15)

B Knife down (same as M14)

D1 Pen down

D2 Pen up

D4 Light source (same as Q)

E Flick notch (same as M68)

F Set feed rate

GO4 Set origin point

G70 Select 3.3 English data

G71 Select 5.1 Metric data format
G91 Identifies GERBER cutter data (4.2 format)
H File identifier

L Begin slowdown (same as M25)
MO EOF (end of file)

MO0 Program stop

MO1 Optional stop

M1l4 Knife down (same as B)

M15 Knife up (same as A)

M17 Maximum advance

M18 Inhibit next overcut

M19 Ignore overcut and advance

M20 Message stop (displayed on OCT)
M25 Run part at reduced velocity (same as L)
M26 Restore normal velocity (same as O)
M30 Rewind data file (return)

M31 Labeler data fellows

M40 Enable automatic sharpen

M41 Disable automatic sharpen

M42 Sharpen

M43 Drill (same as R)

M44 auxiliary drill

M46 Lift and plunge corner

M47 Turn off knife intelligence
M48 Turn on knife intelligence

M51 Null knife intelligence

M60 Run part at 95 % velocity

M61 Run part at 90 % velocity

M62 Run part at 85 % velocity

M63 Run part at 80 % velocity

M64 Run part at 75 % velocity

M65 Run part at 70 % velocity

M66 Run part at 65 % velocity

M67 Run part at 60 % velocity

M68 Special notch (same as E)

M69 Conveyor bite

M70 Origin

N Sequence number of piece

(o] Resume normal speed (same as M26)
Q Establish light as tool (same as D4)
R Drill (same as M43)

X Precedes X coordinate area

Y Precedes Y coordinate area

4 Bite size identifier

/ Block delete

*

EOB (end of block)

2.6.1 X,Y COORDINATE DATA BLOCK

a. Coordinate data should be 4.2 or 3.3 format expressed
in inches, or for metric systems in a 5.1 format in
millimeters. Decimal points are assumed according to

the data format.

b. Leading zeros should be omitted.
c. The X,Y data must be in absolute coordinates.
d. The negative sign must be include when required. Data

with no sign is assumed to be positive.

2.6.2 LABEL DATA BLOCK

The label data can be any printable character except the End of
Block character (*) up to 36 characters in length.

2.6.3 END OF BLOCK

The first M31 block is read as position coordinates. The second
M31 block is processed along with the X,Y position coordinates.
This block of data establishes the angle on which the label is
placed.

A second rotational format allows for two blocks of label data.
One is to be used in the normal cut mode and the second while in
the inverted or "mirror" mode. The data should appear as

follows:

*Xnnnn¥nnnnM31*Normal Label*MirrorLabel*XnnnnYnnnnM31#*

2.7 M, G, AND D COMMANDS

The following rules apply to the use of the M, G and D commands.

1. A block may contain only one M, G or D command.

2. Leading zeros may be omitted from M, G and D commands.
3. M, G and D commands are modal.

Unquote:

Experience as we go along.........

C100

Gerber Cutter controller:

Info. according to Dr J. Helmig of GGT Brussels

All Cutters work with the C100 Cutter Controller. Older Cutters which still
work with the C90 Controller, can use a MID-unit which translates the C100-Data
into the right Format.

The C100 runs on an AT under DOS 3.3 and has a 1.2 Mb Floppy. The System
can be online connected via any DOS-Compatible Network ! It cannot be
addressed via serial lines, since Gerber is using COM1 and COM2 for the
Plotter Control.

The C100 controls automatically the knife intelligence. No additional
NC-code is needed. For speed-control it is better to cut small pieces

first and a bit slower. This is done with code M25, which should be defined
after the N-code. i.e. *N10*M25* . As soon as the Controller reads the next
N-code, the cutter goes to full speed again.

Lift and plunge of the knife has to be programmed.

l.e.

X100Y100%* MOVE WITH KNIFE UP
M14 PLUNGE KNIFE
X100Y200*X200Y200*X200Y100* CUT POSITIONS
X100Y100%* CUT POSITIONS

M15* LIFT KNIFE

The Controller is smart enough to know by which angel and when to lift and
plunge. If the operator wants to influence this intelligence on critical
corners in order to improve the cut-quality, than this is possible with the
M46-code - before reaching the corner. i.e.

X100Y100%* MOVE WITH KNIFE UP

M14 PLUNGE KNIFE

X100Y150%* KNIFE DOWN

M46 LIFT&PLUNGE ON NEXT CORNER
X100Y200%* THIS IS THE CORNER
X200Y200*

FURTHER QUESTIONS ???? lets have them !

Table size is different by all Gerber Cutters and should be an option.

- usable table length
- usable table width
- static table or conveyor

The resolution is depending on the format:

Format 4.2 = 1/100 Inch (Standard Format)

Format 3.3 = 1/1000 Inch defined with: N1*G70%*
Format 5.1 = 1/10 Millimeter defined with: N1*G71*

Serial Ports:

The C100 has a Quad-Board with 4 serial ports. COM4 with Adress:0x2A0 IRQ=12
is still available. No driver is available to shuffle data into the system.
That's why Gerber has no online connection !!! Smart programmer's ?

Further Questions:

GGT

US-06084-0769 Tolland/Connect.
24, Industrial Park Road

West P.O.Box 769

Tel 001 203 871 8082

Mr John Schnetzer

GGT

US-06101-0305 Hartford/Connect.
P.0.Box 305

Tel 001 203.644.1551

G IF (tm)
Graphics Interchange Format (tm)
A standard defining a mechanism
for the storage and transmission
of raster-based graphics information
June 15, 1987
(c) CompuServe Incorporated, 1987
All rights reserved
While this document is copyrighted, the information
contained within is made available for use in computer
software without royalties, or licensing restrictions.
GIF and 'Graphics Interchange Format' are trademarks of
CompuServe, Incorporated.
an H&R Block Company
5000 Arlington Centre Blvd.
Columbus, Ohio 43220
(614) 457-8600

Page 2
Graphics Interchange Format (GIF) Specification
Table of Contents
INTRODUCTION « « « « « « « « « « « « « « « . . page 3
GENERAL FILE FORMAT « « « « « « . . page 3
GIF SIGNATURE . « . « « « « « « « « « « « . . page 4
SCREEN DESCRIPTOR . . « « « « « « « « « « . . page 4
GLOBAL COLOR MAP . . . + « « « « « « « « « . . page 5
IMAGE DESCRIPTOR . . +. « « « « « « « « « « . . page 6
LOCAL COLOR MAP . . + « « « « « « « « « « . . page 7
RASTER DATA . . . ¢« « « & « « « « « « « « . . page 7
GIF TERMINATOR . « . « « « « « « « « « « « . . page 8
GIF EXTENSION BLOCKS « +. . .« . . . page 8
APPENDIX A - GLOSSARY . +. « « « « « « « « .« . page 9
APPENDIX B - INTERACTIVE SEQUENCES page 10
APPENDIX C - IMAGE PACKAGING & COMPRESSION . . page 12
APPENDIX D - MULTIPLE IMAGE PROCESSING page 15
Graphics Interchange Format (GIF) Page 3
Specification
INTRODUCTION
'GIF' (tm) is CompuServe's standard for defining generalized color
raster images. This 'Graphics Interchange Format' (tm) allows

high-quality, high-resolution graphics to be displayed on a variety of
graphics hardware and is intended as an exchange and display mechanism
for graphics images. The image format described in this document is
designed to support current and future image technology and will in
addition serve as a basis for future CompuServe graphics products.

The main focus of this document 1is to provide the technical
information necessary for a programmer to implement GIF encoders and
decoders. As such, some assumptions are made as to terminology relavent
to graphics and programming in general.

The first section of this document describes the GIF data format
and its components and applies to all GIF decoders, either as standalone
programs or as part of a communications package. Appendix B is a
section relavent to decoders that are part of a communications software
package and describes the protocol requirements for entering and exiting
GIF mode, and responding to host interrogations. A glossary in Appendix
A defines some of the terminology used in this document. Appendix C
gives a detailed explanation of how the graphics image itself is
packaged as a series of data bytes.

Graphics Interchange Format Data Definition
GENERAL FILE FORMAT

—

- Repeated 1 to n times

T +
| Raster Data |
e + -—
- GIF Terminator -
e +
Graphics Interchange Format (GIF) Page 4
Specification

GIF SIGNATURE
The following GIF Signature identifies the data following as a
valid GIF image stream. It consists of the following six characters:
GIF8T7a
The last three characters '87a' may be viewed as a version number
for this particular GIF definition and will be used in general as a
reference in documents regarding GIF that address any version
dependencies.
SCREEN DESCRIPTOR
The Screen Descriptor describes the overall parameters for all GIF
images following. It defines the overall dimensions of the image space
or logical screen required, the existance of color mapping information,
background screen color, and color depth information. This information
is stored in a series of 8-bit bytes as described below.

bits

76543210 Byte#

[TR +

\ | 1

+-Screen Width -+ Raster width in pixels (LSB first)

\ | 2

TR +

\ | 3

+-Screen Height-+ Raster height in pixels (LSB first)

\ | 4

ettt e+ M = 1, Global color map follows Descriptor

[M| cr |0|pixel| 5 cr+l = # bits of color resolution

E pixel+l = # bits/pixel in image

| background | 6 background=Color index of screen background

Fom e + (color is defined from the Global color

[oooo0oo0o00O00O0 7 map or default map if none specified)

L +

The logical screen width and height can both be larger than the
physical display. How images 1larger than the physical display are
handled is implementation dependent and can take advantage of hardware
characteristics (e.g. Macintosh scrolling windows). Otherwise images

can be clipped to the edges of the display.
The value of 'pixel' also defines the maximum number of colors

within an image. The range of values for 'pixel' is 0 to 7 which
represents 1 to 8 bits. This translates to a range of 2 (B & W) to 256
colors. Bit 3 of word 5 is reserved for future definition and must be
zero.
Graphics Interchange Format (GIF) Page 5
Specification

GLOBAL COLOR MAP
The Global Color Map is optional but recommended for images where
accurate color rendition is desired. The existence of this color map is
indicated in the 'M' field of byte 5 of the Screen Descriptor. A color
map can also be associated with each image in a GIF file as described
later. However this global map will normally be used because of
hardware restrictions in equipment available today. In the individual

Image Descriptors the 'M' flag will normally be zero. If the Global
Color Map 1is present, it's definition immediately follows the Screen
Descriptor. The number of color map entries following a Screen

Descriptor is equal to 2**(# bits per pixel), where each entry consists
of three byte values representing the relative intensities of red, green
and blue respectively. The structure of the Color Map block is:

bits
76543210 Byte#
S, +
| red intensity | 1 Red value for color index 0
S, +

|green intensity| 2 Green value for color index 0

| blue intensity| 3 Blue value for color index 0
oo +

| red intensity | 4 Red value for color index 1
. +

|green intensity| 5 Green value for color index 1
oo +

| blue intensity| 6 Blue value for color index 1
oo +

: : (Continues for remaining colors)

Each image pixel value received will be displayed according to its
closest match with an available color of the display based on this color
map. The color components represent a fractional intensity value from
none (0) to full (255). White would be represented as (255,255,255),
black as (0,0,0) and medium yellow as (180,180,0). For display, if the
device supports fewer than 8 bits per color component, the higher order
bits of each component are used. In the creation of a GIF color map
entry with hardware supporting fewer than 8 bits per component, the
component values for the hardware should be converted to the 8-bit
format with the following calculation:

<map_value> = <component_value>*255/(2**<nbits> -1)

This assures accurate translation of colors for all displays. In
the cases of creating GIF images from hardware without color palette
capability, a fixed palette should be created based on the available
display colors for that hardware. If no Global Color Map is indicated,
a default color map is generated internally which maps each possible
incoming color index to the same hardware color index modulo <n> where
<n> is the number of available hardware colors.

Graphics Interchange Format (GIF) Page 6
Specification
IMAGE DESCRIPTOR

The Image Descriptor defines the actual placement and extents of
the following image within the space defined in the Screen Descriptor.
Also defined are flags to indicate the presence of a local color lookup
map, and to define the pixel display sequence. Each Image Descriptor is
introduced by an image separator character. The role of the Image
Separator is simply to provide a synchronization character to introduce
an Image Descriptor. This is desirable if a GIF file happens to contain
more than one image. This character is defined as 0x2C hex or ','
(comma). When this character is encountered between images, the Image
Descriptor will follow immediately.

Any characters encountered between the end of a previous image and
the image separator character are to be ignored. This allows future GIF
enhancements to be present in newer image formats and yet ignored safely
by older software decoders.

bits
76543210 Byte#
B +
[oo101100 1 ',' - Image separator character
T T +
| | 2 Start of image in pixels from the
+- Image Left -+ left side of the screen (LSB first)
\ | 3
e +
\ | 4
+- Image Top -+ Start of image in pixels from the
| | 5 top of the screen (LSB first)
R e +
\ | 6
+- Image Width -+ Width of the image in pixels (LSB first)
| 7
o +
\ | 8
+- Image Height-+ Height of the image in pixels (LSB first)
\ | 9
ettt ettt — M=0 - Use global color map, ignore 'pixel’
[M|T]0|0|0|pixel| 10 M=1 - Local color map follows, use 'pixel'’
ettt ——+ I=0 - Image formatted in Sequential order

I=1 - Image formatted in Interlaced order
pixel+l - # bits per pixel for this image
The specifications for the image position and size must be confined
to the dimensions defined by the Screen Descriptor. On the other hand
it is not necessary that the image fill the entire screen defined.

LOCAL COLOR MAP

Graphics Interchange Format (GIF) Page 7
Specification
A Local Color Map is optional and defined here for future use. If

the 'M' bit of byte 10 of the Image Descriptor is set, then a color map
follows the Image Descriptor that applies only to the following image.
At the end of the image, the color map will revert to that defined after
the Screen Descriptor. Note that the 'pixel' field of byte 10 of the
Image Descriptor is used only if a Local Color Map is indicated. This
defines the parameters not only for the image pixel size, but determines
the number of color map entries that follow. The bits per pixel value
will also revert to the value specified in the Screen Descriptor when
processing of the image is complete.
RASTER DATA

The format of the actual image is defined as the series of pixel
color index values that make up the image. The pixels are stored left
to right sequentially for an image row. By default each image row is
written sequentially, top to bottom. 1In the case that the Interlace or
'I' bit is set in byte 10 of the Image Descriptor then the row order of
the image display follows a four-pass process in which the image is
filled in by widely spaced rows. The first pass writes every 8th row,
starting with the top row of the image window. The second pass writes
every 8th row starting at the fifth row from the top. The third pass
writes every 4th row starting at the third row from the top. The fourth
pass completes the image, writing every other row, starting at the
second row from the top. A graphic description of this process follows:

Image

Row Pass 1 Pass 2 Pass 3 Pass 4 Result
0 *xlagx*x *k]gr*
l **4a** **4a**
2 **k3gr*x *k3grk
3 **4b** **4b*~k
4 *kQgkk *kQgkk
5 **4c** **4c*~k
6 **x3p** *%3p**
7 **4d** **4d*~k
8 *xx]px* *x]b**
9 **46** **46**
10 **kJor* *k3okk
11 **4f** **4f*~k
12 *kQph** **xQbh**

The image pixel values are processed as a series of color indices
which map into the existing color map. The resulting color value from
the map is what is actually displayed. This series of pixel indices,
the number of which 1is equal to image-width*image-height pixels, are
passed to the GIF image data stream one value per pixel, compressed and
packaged according to a version of the LZW compression algorithm as
defined in Appendix C.

Graphics Interchange Format (GIF) Page 8
Specification
GIF TERMINATOR

In order to provide a synchronization for the termination of a GIF
image file, a GIF decoder will process the end of GIF mode when the
character 0x3B hex or ';' is found after an image has been processed.
By convention the decoding software will pause and wait for an action
indicating that the user is ready to continue. This may be a carriage
return entered at the keyboard or a mouse click. For interactive
applications this user action must be passed on to the host as a
carriage return character so that the host application can continue.
The decoding software will then typically leave graphics mode and resume
any previous process.

GIF EXTENSION BLOCKS

To provide for orderly extension of the GIF definition, a mechanism
for defining the packaging of extensions within a GIF data stream is
necessary. Specific GIF extensions are to be defined and documented by
CompuServe in order to provide a controlled enhancement path.

GIF Extension Blocks are packaged in a manner similar to that used
by the raster data though not compressed. The basic structure is:

76543210 Byte#

[oo100001] 1 '1' - GIF Extension Block Introducer

| function code | 2 Extension function code (0 to 255)
. + .

| byte count | |

o + |
: +-- Repeated as many times as necessary
|
: |

S + ——t

. +
[0 000000OO]| zero byte count (terminates block)
. +

A GIF Extension Block may immediately preceed any Image Descriptor
or occur before the GIF Terminator.

All GIF decoders must be able to recognize the existence of GIF
Extension Blocks and read past them if unable to process the function
code. This ensures that older decoders will be able to process extended
GIF image files in the future, though without the additional

functionality.
Graphics Interchange Format (GIF) Page 9
Appendix A - Glossary
GLOSSARY
Pixel - The smallest picture element of a graphics image. This usually
corresponds to a single dot on a graphics screen. Image resolution is
typically given in units of pixels. For example a fairly standard

graphics screen format is one 320 pixels across and 200 pixels high.
Each pixel can appear as one of several colors depending on the
capabilities of the graphics hardware.

Raster - A horizontal row of pixels representing one line of an image. A
typical method of working with images since most hardware is oriented to
work most efficiently in this manner.

LSB - Least Significant Byte. Refers to a convention for two byte numeric
values in which the less significant byte of the value preceeds the more
significant byte. This convention is typical on many microcomputers.

Color Map - The list of definitions of each color used in a GIF image.
These desired colors are converted to available colors through a table
which is derived by assigning an incoming color index (from the image)
to an output color index (of the hardware). While the color map
definitons are specified in a GIF image, the output pixel colors will
vary based on the hardware used and its ability to match the defined
color.

Interlace - The method of displaying a GIF image in which multiple passes
are made, outputting raster 1lines spaced apart to provide a way of
visualizing the general content of an entire image before all of the
data has been processed.

B Protocol - A CompuServe-developed error-correcting file transfer protocol
available in the public domain and implemented in CompuServe VIDTEX
products. This error checking mechanism will be used in transfers of
GIF images for interactive applications.

LZW - A sophisticated data compression algorithm based on work done by
Lempel-Ziv & Welch which has the feature of very efficient one-pass
encoding and decoding. This allows the image to be decompressed and

displayed at the same time. The original article from which this
technique was adapted is:
Terry A. Welch, "A Technique for High Performance Data

Compression", IEEE Computer, vol 17 no 6 (June 1984)
This basic algorithm is also used in the public domain ARC file

compression wutilities. The CompuServe adaptation of LZW for GIF is
described in Appendix C.
Graphics Interchange Format (GIF) Page 10

Appendix B - Interactive Sequences
GIF Sequence Exchanges for an Interactive Environment

The following sequences are defined for use in mediating control
between a GIF sender and GIF receiver over an interactive communications
line. These sequences do not apply to applications that involve
downloading of static GIF files and are not considered part of a GIF
file.

GIF CAPABILITIES ENQUIRY

The GCE sequence is issued from a host and requests an interactive
GIF decoder to return a response message that defines the graphics
parameters for the decoder. This involves returning information about
available screen sizes, number of bits/color supported and the amount of

color detail supported. The escape sequence for the GCE is defined as:
ESC [>0 g (g is lower case, spaces inserted for clarity)
(0x1B 0x5B 0x3E 0x30 0x67)
GIF CAPABILITIES RESPONSE
The GIF Capabilities Response message is returned by an interactive
GIF decoder and defines the decoder's display capabilities for all
graphics modes that are supported by the software. Note that this can
also include graphics printers as well as a monitor screen. The general
format of this message is:

#version;protocol{;dev, width, height, color-bits, color-res}... <CR>

"#' - GCR identifier character (Number Sign)

version - GIF format version number; initially '87a'’

protocol='0' - No end-to-end protocol supported by decoder

Transfer as direct 8-bit data stream.

protocol='1l' - Can use an error correction protocol to transfer GIF data
interactively from the host directly to the display.

dev = '0' - Screen parameter set follows

dev = '1' - Printer parameter set follows

width - Maximum supported display width in pixels

height - Maximum supported display height in pixels

color-bits - Number of bits per pixel supported. The number of
supported colors is therefore 2**color-bits.

color-res - Number of bits per color component supported in the
hardware color palette. If color-res is '0' then no

hardware palette table is available.

Note that all values in the GCR are returned as ASCII decimal
numbers and the message is terminated by a Carriage Return character.
Graphics Interchange Format (GIF) Page 11

Appendix B - Interactive Sequences
The following GCR message describes three standard EGA
configurations with no printer; the GIF data stream can be processed
within an error correcting protocol:
#87a;1 ;0,320,200,4,0 ;0,640,200,2,2 ;0,640,350,4,2<CR>
ENTER GIF GRAPHICS MODE
Two sequences are currently defined to invoke an interactive GIF
decoder into action. The only difference between them is that different
output media are selected. These sequences are:
ESC [>1g Display GIF image on screen
(0x1B 0x5B 0x3E 0x31 0x67)
ESC [> 2 g Display image directly to an attached graphics printer.
The image may optionally be displayed on the screen as
well.
(0x1B 0x5B 0x3E 0x32 0x67)
Note that the 'g' character terminating each sequence is in lower
case.
INTERACTIVE ENVIRONMENT
The assumed environment for the transmission of GIF image data from
an interactive application 1is a full 8-bit data stream from host to
micro. All 256 character codes must be transferrable. The establishing
of an 8-bit data path for communications will normally be taken care of
by the host application programs. It is however up to the receiving
communications programs supporting GIF to be able to receive and pass on
all 256 8-bit codes to the GIF decoder software.
Graphics Interchange Format (GIF) Page 12
Appendix C - Image Packaging & Compression
The Raster Data stream that represents the actual output image can
be represented as:
76543210

o +

| code size |

S + ——

|blok byte count| |

o + |

: : +-— Repeated as many times as necessary
| data bytes |

o + -——l

o +

[0 0000O0OO]| zero byte count (terminates data stream)
S +

The conversion of the image from a series of pixel values to a
transmitted or stored character stream involves several steps. In brief

these steps are:

1. Establish the Code Size - Define the number of bits needed to
represent the actual data.

2. Compress the Data - Compress the series of image pixels to a series
of compression codes.

3. Build a Series of Bytes - Take the set of compression codes and
convert to a string of 8-bit bytes.

4. Package the Bytes - Package sets of bytes into blocks preceeded by
character counts and output.

ESTABLISH CODE SIZE
The first byte of the GIF Raster Data stream is a value indicating
the minimum number of bits required to represent the set of actual pixel
values. Normally this will be the same as the number of color bits.

Because of some algorithmic constraints however, black & white images

which have one color bit must be indicated as having a code size of 2.

This code size value also implies that the compression codes must start

out one bit longer.

COMPRESSION
The LZW algorithm converts a series of data values into a series of
codes which may be raw values or a code designating a series of values.

Using text characters as an analogy, the output code consists of a

character or a code representing a string of characters.

Graphics Interchange Format (GIF) Page 13
Appendix C - Image Packaging & Compression
The LZW algorithm used in GIF matches algorithmically with the
standard LZW algorithm with the following differences:

1. A special Clear code is defined which resets all
compression/decompression parameters and tables to a start-up state.
The value of this code is 2**<code size>. For example if the code
size indicated was 4 (image was 4 bits/pixel) the Clear code value
would be 16 (10000 binary). The Clear code can appear at any point
in the image data stream and therefore requires the LZW algorithm to
process succeeding codes as if a new data stream was starting.
Encoders should output a Clear code as the first code of each image
data stream.

2. An End of Information code is defined that explicitly indicates the
end of the image data stream. LZW processing terminates when this
code is encountered. It must be the last code output by the encoder
for an image. The value of this code is <Clear code>+1.

3. The first available compression code value is <Clear code>+2.

4. The output codes are of variable length, starting at <code size>+1
bits per code, up to 12 bits per code. This defines a maximum code
value of 4095 (hex FFF). Whenever the LZW code value would exceed
the current code length, the code length is increased by one. The
packing/unpacking of these codes must then be altered to reflect the
new code length.

BUILD 8-BIT BYTES
Because the LZW compression used for GIF creates a series of
variable 1length codes, of between 3 and 12 bits each, these codes must
be reformed into a series of 8-bit bytes that will be the characters
actually stored or transmitted. This provides additional compression of
the image. The codes are formed into a stream of bits as if they were
packed right to left and then picked off 8 bits at a time to be output.

Assuming a character array of 8 bits per character and using 5 bit codes

to be packed, an example layout would be similar to:

byte n byte 5 byte 4 byte 3 byte 2 byte 1

Note that the physical packing arrangement will change as the
number of bits per compression code change but the concept remains the
same.

PACKAGE THE BYTES

Once the bytes have been created, they are grouped into blocks for
output by preceeding each block of 0 to 255 bytes with a character count
byte. A block with a zero byte count terminates the Raster Data stream
for a given 1image. These blocks are what are actually output for the

Graphics Interchange Format (GIF) Page 14

Appendix C - Image Packaging & Compression
GIF image. This block format has the side effect of allowing a decoding
program the ability to read past the actual image data if necessary by
reading block counts and then skipping over the data.

Graphics Interchange Format (GIF) Page 15

Appendix D - Multiple Image Processing
Since a GIF data stream can contain multiple images, it is
necessary to describe processing and display of such a file. Because
the image descriptor allows for placement of the image within the
logical screen, it is possible to define a sequence of images that may
each be a partial screen, but in total £ill the entire screen. The
guidelines for handling the multiple image situation are:

1. There is no pause between images. Each is processed immediately as
seen by the decoder.

2. Each image explicitly overwrites any image already on the screen
inside of its window. The only screen clears are at the beginning
and end of the GIF image process. See discussion on the GIF
terminator.

44

Cover Sheet for the GIF89a Specification

DEFERRED CLEAR CODE IN LZW COMPRESSION

There has been confusion about where clear codes can be found in the
data stream. As the specification says, they may appear at anytime. There
is not a requirement to send a clear code when the string table is full.

It is the encoder's decision as to when the table should be cleared. When
the table is full, the encoder can chose to use the table as is, making no
changes to it until the encoder chooses to clear it. The encoder during
this time sends out codes that are of the maximum Code Size.

As we can see from the above, when the decoder's table is full, it must
not change the table until a clear code is received. The Code Size is that
of the maximum Code Size. Processing other than this is done normally.

Because of a large base of decoders that do not handle the decompression in
this manner, we ask developers of GIF encoding software to NOT implement
this feature until at least January 1991 and later if they see that their
particular market is not ready for it. This will give developers of GIF
decoding software time to implement this feature and to get it into the
hands of their clients before the decoders start "breaking" on the new
GIF's. It is not required that encoders change their software to take
advantage of the deferred clear code, but it is for decoders.

APPLICATION EXTENSION BLOCK - APPLICATION IDENTIFIER

There will be a Courtesy Directory file located on CompuServe in the PICS
forum. This directory will contain Application Identifiers for Application
Extension Blocks that have been used by developers of GIF applications.
This file is intended to help keep developers that wish to create
Application Extension Blocks from using the same Application Identifiers.
This is not an official directory; it is for voluntary participation only
and does not guarantee that someone will not use the same identifier.

E-Mail can be sent to Larry Wood (forum manager of PICS) indicating the
request for inclusion in this file with an identifier.

GRAPHICS INTERCHANGE FORMAT (sm)
Version 89a (modified)
(c)1987,1988,1989,1990

Copyright

CompuServe Incorporated
Columbus, Ohio

CompuServe Incorporated Graphics Interchange Format
Document Date : 9 January, 1995 Programming Reference

Table of Contents
DiSCLaIMEr i ettt ettt eeeeeeeeeneeaneeaeesseessssasesassssscssssssssanesnnsss
0 a0 o o

LiCENSINg . e e eeeeeeeeeeseseaeesssesesassesssesessssesssesessssssssasssnsssss

About the DoCUMENE. ..ttt iiiitieteeeeeeeneeeeeeeeasocoeoesssnssnsnsnnsanns

General DeSCription..eeeeeeeeeeeeeeeeeeeseseseesssesesesossssesesassanssese 2
VerSion NUMDEIS.uueteeeeneeeeeeeeeaneeeeeeeaonnseeeesaonnnssessssssnnnnnnnes 2
The EnCOder...cceeeecosescosccsossorsosscrsoscssssossasosasoscscssnsssosscsosssnessss 3
The DeCOder ... iereecrsescoscotsossorsosorsoscssssossasosasoscscssssssossssosssnesss 3
COMPLiANCB . s e vteeeeeeseseeoesssesessssesssasossssssssssssssssesssssssnssase 3
About RecommendationS. ... eeeeeeiiennieeeeeieeennneeeeeeeonnseeeesannnnnnaess 4
About COlor TablesS...ieeieeeieieeeeneeeneeoeesoesoosesosesossasoassaasasasaaes 4
Blocks, EXtensions and SCOPE ...t eteeeeeesesesecsssescsesossssssessssanssese 4
BlOCK SiZ@S.tiuuiiiieeetieieenneeeeeeeeoansseeeeeoonnssseessssssnssssasssannnaas D
Using GIF as an embedded ProtoCOl.....eeeeeeeeeseeesecoseesnsecssssssasnsanne D
Data SUb-bloCKS ...ttt eeieieeeeeeeeneeeseeoeesosessosesasasosassaasas 5
BloCk TeIrMiNatOr e ettt eeneneeeeeeeeeseeeeeeeonnsseeesssssssssasssannnaes 6
2 T T 1= o
Logical Screen DeSCriptOr...eieeeeeeeeeeeeeeseteseeossesseessesssesssesnsanse 8
Global Color Table....ieeeieeetieeeeaeeeoaeeoaesosesosessnssssssasasasssnssass 10
IMAge DESCriPtOr e e et eeeeeeeeeeeeeessneeosssoesssesssessssssssssesssesnses 11
Local Color Table. .. uieeetienetieeeeaeeeoaeeosesosesosesoaesosasasasnsasnnaass 13
Table Based IMAge Dat@...eeeeeeeeseeeeeesoeessosossosossssosossnsassssasonnss 14
Graphic CoOntrol EXteNnSiON...c.ceeeeeeieeeeeeeeeeneeosecesesossasseassssnnenns 15
Comment EXteNSIioN. ettt eeeeeeeeeeeeeeeeeeeeeeeonesaeeessaanssssesssnnnnnns 17
Plain TeXt EXLENSI0N. ..ttt ettt teieteieeeneeeeeeneeoneceasesossasseasscannanns 18
Application EXteNSIioN...cceeeeeeeeeeeeeeeeesetenecesssosesosesosesssesncasnns 21

o B =3 23

Quick Reference Table....ueeeeeeeeeeeeeeeseeacoassssssoassssssscssssssssnssns 24
GIF GLaAMMATI e e oo seeeoeosososossssososssossssssosssssssssssossssssssssssssssss 25
GlOSSAL Y et e sesesessesesesssosssssssossssssesssossssssssssossssssssssssnsnsss 27
[0 o3 0= 8 i o3 o = 28
Interlaced IMagES .. eeeeeeeeesssossesesosssossssssossssssssssssssssssssssosns 29
Variable-Length-Code LZW COMPreSSIiON...eeeeeeeeeeeeseeesonesonesonssnnasnns 30

On-line Capabilities DialogUe...c.ceerieeereeeeeeneeoneconesnsasceassesnnasns 33

1. Disclaimer.

The information provided herein is subject to change without notice. In no
event will CompuServe Incorporated be liable for damages, including any loss of
revenue, loss of profits or other incidental or consequential damages arising
out of the use or inability to use the information; CompuServe Incorporated
makes no claim as to the suitability of the information.

2. Foreword.

This document defines the Graphics Interchange Format(sm). The specification
given here defines version 89a, which is an extension of version 87a.

The Graphics Interchange Format(sm) as specified here should be considered
complete; any deviation from it should be considered invalid, including but not
limited to, the use of reserved or undefined fields within control or data
blocks, the inclusion of extraneous data within or between blocks, the use of
methods or algorithms not specifically listed as part of the format, etc. In
general, any and all deviations, extensions or modifications not specified in
this document should be considered to be in violation of the format and should
be avoided.

3. Licensing.

The Graphics Interchange Format(c) is the copyright property of CompuServe
Incorporated. Only CompuServe Incorporated is authorized to define, redefine,
enhance, alter, modify or change in any way the definition of the format.

CompuServe Incorporated hereby grants a limited, non-exclusive, royalty-free
license for the use of the Graphics Interchange Format(sm) in computer
software; computer software utilizing GIF(sm) must acknowledge ownership of the
Graphics Interchange Format and its Service Mark by CompuServe Incorporated, in
User and Technical Documentation. Computer software utilizing GIF, which is
distributed or may be distributed without User or Technical Documentation must
display to the screen or printer a message acknowledging ownership of the
Graphics Interchange Format and the Service Mark by CompuServe Incorporated; in
this case, the acknowledgement may be displayed in an opening screen or leading
banner, or a closing screen or trailing banner. A message such as the following
may be used:

"The Graphics Interchange Format(c) is the Copyright property of
CompuServe Incorporated. GIF(sm) is a Service Mark property of
CompuServe Incorporated."

For further information, please contact :

CompuServe Incorporated
Graphics Technology Department
5000 Arlington Center Boulevard
Columbus, Ohio 43220

U. S. A.

CompuServe Incorporated maintains a mailing list with all those individuals and
organizations who wish to receive copies of this document when it is corrected

or revised. This service is offered free of charge; please provide us with your
mailing address.

Users of this specification should note that the LZW compression and
decompression methods described in U.S. Patent No. 4,558,302 and certain
corresponding foreign patents are owned by Unisys Corporation. Software and
hardware developers may be required to obtain a license under this patent in
order to develop and market products using GIF LZW compression and
decompression. Unisys has agreed that developers may obtain such a license on
reasonable, non-discriminatory terms and conditions. Further information may
be obtained from: Welch Licensing Department, Office of the General Counsel, M/S
C1lSW1l9, Unisys Corporation, Blue Bell, PA 19424.

4. About the Document.

This document describes in detail the definition of the Graphics Interchange
Format. This document is intended as a programming reference; it is
recommended that the entire document be read carefully before programming,
because of the interdependence of the various parts. There is an individual
section for each of the Format blocks. Within each section, the sub-section
labeled Required Version refers to the version number that an encoder will have
to use if the corresponding block is used in the Data Stream. Within each
section, a diagram describes the individual fields in the block; the diagrams
are drawn vertically; top bytes in the diagram appear first in the Data Stream.
Bits within a byte are drawn most significant on the left end. Multi-byte
numeric fields are ordered Least Significant Byte first. Numeric constants are
represented as Hexadecimal numbers, preceded by "0x". Bit fields within a byte
are described in order from most significant bits to least significant bits.

5. General Description.

The Graphics Interchange Format(sm) defines a protocol intended for the on-line
transmission and interchange of raster graphic data in a way that is
independent of the hardware used in their creation or display.

The Graphics Interchange Format is defined in terms of blocks and sub-blocks
which contain relevant parameters and data used in the reproduction of a
graphic. A GIF Data Stream is a sequence of protocol blocks and sub-blocks
representing a collection of graphics. In general, the graphics in a Data
Stream are assumed to be related to some degree, and to share some control
information; it is recommended that encoders attempt to group together related
graphics in order to minimize hardware changes during processing and to
minimize control information overhead. For the same reason, unrelated graphics
or graphics which require resetting hardware parameters should be encoded
separately to the extent possible.

A Data Stream may originate locally, as when read from a file, or it may
originate remotely, as when transmitted over a data communications line. The
Format is defined with the assumption that an error-free Transport Level
Protocol is used for communications; the Format makes no provisions for
error-detection and error-correction.

The GIF Data Stream must be interpreted in context, that is, the application
program must rely on information external to the Data Stream to invoke the
decoder process.

6. Version Numbers.

The version number in the Header of a Data Stream is intended to identify the
minimum set of capabilities required of a decoder in order to fully process the
Data Stream. An encoder should use the earliest possible version number that
includes all the blocks used in the Data Stream. Within each block section in
this document, there is an entry labeled Required Version which specifies the

earliest version number that includes the corresponding block. The encoder
should make every attempt to use the earliest version number covering all the
blocks in the Data Stream; the unnecessary use of later version numbers will
hinder processing by some decoders.

7. The Encoder.

The Encoder is the program used to create a GIF Data Stream. From raster data
and other information, the encoder produces the necessary control and data
blocks needed for reproducing the original graphics.

The encoder has the following primary responsibilities.

- Include in the Data Stream all the necessary information to
reproduce the graphics.

- Insure that a Data Stream is labeled with the earliest possible
Version Number that will cover the definition of all the blocks in
it; this is to ensure that the largest number of decoders can
process the Data Stream.

- Ensure encoding of the graphics in such a way that the decoding
process is optimized. Avoid redundant information as much as

possible.

- To the extent possible, avoid grouping graphics which might

require resetting hardware parameters during the decoding process.

- Set to zero (off) each of the bits of each and every field
designated as reserved. Note that some fields in the Logical Screen
Descriptor and the Image Descriptor were reserved under Version
87a, but are used under version 89a.

8. The Decoder.

The Decoder is the program used to process a GIF Data Stream. It processes the
Data Stream sequentially, parsing the various blocks and sub-blocks, using the
control information to set hardware and process parameters and interpreting the
data to render the graphics.

The decoder has the following primary responsibilities.

- Process each graphic in the Data Stream in sequence, without
delays other than those specified in the control information.

- Set its hardware parameters to fit, as closely as possible, the
control information contained in the Data Stream.

9. Compliance.

An encoder or a decoder is said to comply with a given version of the Graphics
Interchange Format if and only if it fully conforms with and correctly
implements the definition of the standard associated with that version. An

encoder or a decoder may be compliant with a given version number and not
compliant with some subsequent version.

10. About Recommendations.

Each block section in this document contains an entry labeled Recommendation;
this section lists a set of recommendations intended to guide and organize the
use of the particular blocks. Such recommendations are geared towards making
the functions of encoders and decoders more efficient, as well as making
optimal use of the communications bandwidth. It is advised that these
recommendations be followed.

11. About Color Tables.

The GIF format utilizes color tables to render raster-based graphics. A color
table can have one of two different scopes: global or local. A Global Color
Table is used by all those graphics in the Data Stream which do not have a
Local Color Table associated with them. The scope of the Global Color Table is
the entire Data Stream. A Local Color Table is always associated with the
graphic that immediately follows it; the scope of a Local Color Table is
limited to that single graphic. A Local Color Table supersedes a Global Color
Table, that is, if a Data Stream contains a Global Color Table, and an image
has a Local Color Table associated with it, the decoder must save the Global
Color Table, use the Local Color Table to render the image, and then restore
the Global Color Table. Both types of color tables are optional, making it
possible for a Data Stream to contain numerous graphics without a color table
at all. For this reason, it is recommended that the decoder save the last
Global Color Table used until another Global Color Table is encountered. In
this way, a Data Stream which does not contain either a Global Color Table or
a Local Color Table may be processed using the last Global Color Table saved.
If a Global Color Table from a previous Stream is used, that table becomes the
Global Color Table of the present Stream. This is intended to reduce the

overhead incurred by color tables. In particular, it is recommended that an
encoder use only one Global Color Table if all the images in related Data
Streams can be rendered with the same table. If no color table is available at
all, the decoder is free to use a system color table or a table of its own. In
that case, the decoder may use a color table with as many colors as its
hardware is able to support; it is recommended that such a table have black and
white as its first two entries, so that monochrome images can be rendered
adequately.

The Definition of the GIF Format allows for a Data Stream to contain only the
Header, the Logical Screen Descriptor, a Global Color Table and the GIF
Trailer. Such a Data Stream would be used to load a decoder with a Global Color
Table, in preparation for subsequent Data Streams without a color table at all.

12. Blocks, Extensions and Scope.

Blocks can be classified into three groups : Control, Graphic-Rendering and
Special Purpose. Control blocks, such as the Header, the Logical Screen
Descriptor, the Graphic Control Extension and the Trailer, contain information
used to control the process of the Data Stream or information wused in setting
hardware parameters. Graphic-Rendering blocks such as the Image Descriptor and

the Plain Text Extension contain information and data used to render a graphic
on the display device. Special Purpose blocks such as the Comment Extension and
the Application Extension are neither used to control the process of the Data
Stream nor do they contain information or data used to render a graphic on the
display device. With the exception of the Logical Screen Descriptor and the
Global Color Table, whose scope is the entire Data Stream, all other Control
blocks have a limited scope, restricted to the Graphic-Rendering block that
follows them. Special Purpose blocks do not delimit the scope of any Control
blocks; Special Purpose blocks are transparent to the decoding process.
Graphic-Rendering blocks and extensions are used as scope delimiters for
Control blocks and extensions. The labels used to identify labeled blocks fall
into three ranges : 0x00-0x7F (0-127) are the Graphic Rendering blocks,
excluding the Trailer (0x3B); 0x80-0xF9 (128-249) are the Control blocks;
0xFA-0XFF (250-255) are the Special Purpose blocks. These ranges are defined so
that decoders can handle block scope by appropriately identifying block labels,
even when the block itself cannot be processed.

13. Block Sizes.

The Block Size field in a block, counts the number of bytes remaining in the
block, not counting the Block Size field itself, and not counting the Block
Terminator, if one is to follow. Blocks other than Data Blocks are intended to
be of fixed length; the Block Size field is provided in order to facilitate
skipping them, not to allow their size to change in the future. Data blocks
and sub-blocks are of variable length to accommodate the amount of data.

14. Using GIF as an embedded protocol.

As an embedded protocol, GIF may be part of larger application protocols,
within which GIF is used to render graphics. 1In such a case, the application
protocol could define a block within which the GIF Data Stream would be
contained. The application program would then invoke a GIF decoder upon
encountering a block of type GIF. This approach is recommended in favor of
using Application Extensions, which become overhead for all other applications
that do not process them. Because a GIF Data Stream must be processed in
context, the application must rely on some means of identifying the GIF Data
Stream outside of the Stream itself.

15.

up

to

16.

Data Sub-blocks.

a. Description. Data Sub-blocks are units containing data. They do not
have a label, these blocks are processed in the context of control
blocks, wherever data blocks are specified in the format. The first byte
of the Data sub-block indicates the number of data bytes to follow. A
data sub-block may contain from 0 to 255 data bytes. The size of the
block does not account for the size byte itself, therefore, the empty
sub-block is one whose size field contains 0x00.

b. Required Version. 87a.

c. Syntax.

76543210 Field Name Type
o +

| | Block Size Byte
o +

| |
+- —

| |
+- -+

| |
+- —

| | Data Values Byte
+- -+

| |
+- e e e e -+

| |
+- -+

| |
- -+

| |
o +

i) Block Size - Number of bytes in the Data Sub-block; the size
must be within 0 and 255 bytes, inclusive.

ii) Data Values - Any 8-bit value. There must be exactly as many
Data Values as specified by the Block Size field.

d. Extensions and Scope. This type of block always occurs as part of a
larger unit. It does not have a scope of itself.

e. Recommendation. None.

Block Terminator.

a. Description. This zero-length Data Sub-block is used to terminate a
sequence of Data Sub-blocks. It contains a single byte in the position of
the Block Size field and does not contain data.

b. Required Version. 87a.

c. Syntax.

76543210 Field Name Type

| | Block Size Byte

i) Block Size - Number of bytes in the Data Sub-block; this field
contains the fixed value 0x00.

ii) Data Values - This block does not contain any data.

d. Extensions and Scope. This block terminates the immediately preceding
sequence of Data Sub-blocks. This block cannot be modified by any
extension.

e. Recommendation. None.

17. Header.

a. Description. The Header identifies the GIF Data Stream in context. The
Signature field marks the beginning of the Data Stream, and the Version
field identifies the set of capabilities required of a decoder to fully
process the Data Stream. This block is REQUIRED; exactly one Header must
be present per Data Stream.

b. Required Version. Not applicable. This block is not subject to a
version number. This block must appear at the beginning of every Data

Stream.

c. Syntax.

76543210 Field Name Type
o +
0 | | Signature 3 Bytes
+- —+
1| |
+- —+
2| |
S +
3 | | Version 3 Bytes
+- —+
4| |
+- —+
5 | |
S +

i) Signature - Identifies the GIF Data Stream. This field contains
the fixed value 'GIF'.

ii) Version - Version number used to format the data stream.
Identifies the minimum set of capabilities necessary to a decoder
to fully process the contents of the Data Stream.

Version Numbers as of 10 July 1990 : "87a" - May 1987
"89a" - July 1989

Version numbers are ordered numerically increasing on the first two
digits starting with 87 (87,88,...,99,00,...,85,86) and
alphabetically increasing on the third character (a,...,z).

iii) Extensions and Scope. The scope of this block is the entire
Data Stream. This block cannot be modified by any extension.

d. Recommendations.

i) Signature - This field identifies the beginning of the GIF Data
Stream; it is not intended to provide a unique signature for the
identification of the data. It is recommended that the GIF Data
Stream be identified externally by the application. (Refer to
Appendix G for on-line identification of the GIF Data Stream.)

ii) Version - ENCODER : An encoder should use the earliest possible
version number that defines all the blocks used in the Data Stream.
When two or more Data Streams are combined, the latest of the
individual version numbers should be used for the resulting Data
Stream. DECODER : A decoder should attempt to process the data
stream to the best of its ability; if it encounters a version
number which it is not capable of processing fully, it should
nevertheless, attempt to process the data stream to the best of its
ability, perhaps after warning the user that the data may be
incomplete.

18. Logical Screen Descriptor.

a. Description. The Logical Screen Descriptor contains the parameters
necessary to define the area of the display device within which the
images will be rendered. The coordinates in this block are given with
respect to the top-left corner of the virtual screen; they do not
necessarily refer to absolute coordinates on the display device. This
implies that they could refer to window coordinates in a window-based
environment or printer coordinates when a printer is used.

This block is REQUIRED; exactly one Logical Screen Descriptor must be
present per Data Stream.

b. Required Version. Not applicable. This block is not subject to a
version number. This block must appear immediately after the Header.

c. Syntax.

76543210 Field Name Type

o +

0 | | Logical Screen Width Unsigned
+- —+

1 |
o +

2 | | Logical Screen Height Unsigned
+- —+

30 |
o +

4 || | | <Packed Fields> See below
R +

5 | | Background Color Index Byte
o +

6 | | Pixel Aspect Ratio Byte

<Packed Fields> = Global Color Table Flag 1 Bit
Color Resolution 3 Bits
Sort Flag 1 Bit
Size of Global Color Table 3 Bits

i) Logical Screen Width - Width, in pixels, of the Logical Screen
where the images will be rendered in the displaying device.

ii) Logical Screen Height - Height, in pixels, of the Logical
Screen where the images will be rendered in the displaying device.

iii) Global Color Table Flag - Flag indicating the presence of a
Global Color Table; if the flag is set, the Global Color Table will
immediately follow the Logical Screen Descriptor. This flag also
selects the interpretation of the Background Color Index; if the
flag is set, the value of the Background Color Index field should
be used as the table index of the background color. (This field is
the most significant bit of the byte.)

Values : 0 - No Global Color Table follows, the Background
Color Index field is meaningless.
1 - A Global Color Table will immediately follow, the

Background Color Index field is meaningful.

iv) Color Resolution - Number of bits per primary color available
to the original image, minus 1. This value represents the size of
the entire palette from which the colors in the graphic were
selected, not the number of colors actually used in the graphic.
For example, if the value in this field is 3, then the palette of
the original image had 4 bits per primary color available to create
the image. This value should be set to indicate the richness of
the original palette, even if not every color from the whole
palette is available on the source machine.

v) Sort Flag - Indicates whether the Global Color Table is sorted.
If the flag is set, the Global Color Table is sorted, in order of
decreasing importance. Typically, the order would be decreasing
frequency, with most frequent color first. This assists a decoder,
with fewer available colors, in choosing the best subset of colors;
the decoder may use an initial segment of the table to render the
graphic.

Values : 0 - Not ordered.
1 - Ordered by decreasing importance, most
important color first.

vi) Size of Global Color Table - If the Global Color Table Flag is
set to 1, the value in this field is used to calculate the number
of bytes contained in the Global Color Table. To determine that
actual size of the color table, raise 2 to [the value of the field
+ 1]. Even if there is no Global Color Table specified, set this
field according to the above formula so that decoders can choose
the best graphics mode to display the stream in. (This field is
made up of the 3 least significant bits of the byte.)

vii) Background Color Index - Index into the Global Color Table for

10

the Background Color. The Background Color is the color used for
those pixels on the screen that are not covered by an image. If the
Global Color Table Flag is set to (zero), this field should be zero

and should be ignored.

viii) Pixel Aspect Ratio - Factor used to compute an approximation
of the aspect ratio of the pixel in the original image. If the
value of the field is not 0, this approximation of the aspect ratio
is computed based on the formula:

Aspect Ratio = (Pixel Aspect Ratio + 15) / 64

The Pixel Aspect Ratio is defined to be the quotient of the pixel's
width over its height. The value range in this field allows
specification of the widest pixel of 4:1 to the tallest pixel of
1:4 in increments of 1/64th.

Values : 0 - No aspect ratio information is given.
1..255 - Value used in the computation.

d. Extensions and Scope. The scope of this block is the entire Data
Stream. This block cannot be modified by any extension.

e. Recommendations. None.

19. Global Color Table.

a. Description. This block contains a color table, which is a sequence of
bytes representing red-green-blue color triplets. The Global Color Table
is used by images without a Local Color Table and by Plain Text
Extensions. Its presence is marked by the Global Color Table Flag being
set to 1 in the Logical Screen Descriptor; if present, it immediately
follows the Logical Screen Descriptor and contains a number of bytes
equal to

3 x 2% (Size of Global Color Table+l).

This block is OPTIONAL; at most one Global Color Table may be present
per Data Stream.

b. Required Version. 87a

11

c. Syntax.

76543210 Field Name Type

0 | | Red 0 Byte
+- -+

1| | Green 0 Byte
+- -+

2 | | Blue 0 Byte

up

to

| Red 1 Byte

|
+- -+
Green Byte
1
+- -+
| |
+= P -+ e
| |
+- -+
Green 255 Byte
2
+- -+
Blue 255 Byte
| | lue 2

d. Extensions and Scope. The scope of this block is the entire Data
Stream. This block cannot be modified by any extension.

e. Recommendation. None.

20. Image Descriptor.

a. Description. Each image in the Data Stream is composed of an Image
Descriptor, an optional Local Color Table, and the image data. Each
image must fit within the boundaries of the Logical Screen, as defined
in the Logical Screen Descriptor.

The Image Descriptor contains the parameters necessary to process a table
based image. The coordinates given in this block refer to coordinates
within the Logical Screen, and are given in pixels. This block is a
Graphic-Rendering Block, optionally preceded by one or more Control
blocks such as the Graphic Control Extension, and may be optionally
followed by a Local Color Table; the Image Descriptor is always followed
by the image data.

This block is REQUIRED for an image. Exactly one Image Descriptor must
be present per image in the Data Stream. An unlimited number of images

may be present per Data Stream.

b. Required Version. 87a.

12

c. Syntax.

76543210 Field Name Type
. +

| | Image Separator Byte
. +

| | Image Left Position Unsigned
- —+
R .

| | Image Top Position Unsigned
- —+
R .

| | Image Width Unsigned
- —+

., +

| | Image Height Unsigned

+- -+

| |

., +

| | | | <Packed Fields> See below

., +

<Packed Fields> = Local Color Table Flag 1 Bit
Interlace Flag 1 Bit
Sort Flag 1 Bit
Reserved 2 Bits
Size of Local Color Table 3 Bits

i) Image Separator - Identifies the beginning of an Image
Descriptor. This field contains the fixed value 0x2C.

ii) Image Left Position - Column number, in pixels, of the left edge
of the image, with respect to the left edge of the Logical Screen.
Leftmost column of the Logical Screen is 0.

iii) Image Top Position - Row number, in pixels, of the top edge of
the image with respect to the top edge of the Logical Screen. Top
row of the Logical Screen is 0.

iv) Image Width - Width of the image in pixels.

v) Image Height - Height of the image in pixels.

vi) Local Color Table Flag - Indicates the presence of a Local Color

Table immediately following this Image Descriptor. (This field is
the most significant bit of the byte.)

Values : 0 - Local Color Table is not present. Use
Global Color Table if available.
1 - Local Color Table present, and to follow

immediately after this Image Descriptor.

13

vii) Interlace Flag - Indicates if the image is interlaced. An image
is interlaced in a four-pass interlace pattern; see Appendix E for
details.

Values : 0 - Image is not interlaced.
1 - Image is interlaced.

viii) Sort Flag - Indicates whether the Local Color Table is
sorted. If the flag is set, the Local Color Table is sorted, in
order of decreasing importance. Typically, the order would be
decreasing frequency, with most frequent color first. This assists
a decoder, with fewer available colors, in choosing the best subset
of colors; the decoder may use an initial segment of the table to
render the graphic.

Values : 0 - Not ordered.
1 - Ordered by decreasing importance, most
important color first.

ix) Size of Local Color Table - If the Local Color Table Flag is
set to 1, the value in this field is used to calculate the number
of bytes contained in the Local Color Table. To determine that
actual size of the color table, raise 2 to the value of the field
+ 1. This value should be 0 if there is no Local Color Table

21.

up

767

specified. (This field is made up of the 3 least significant bits
of the byte.)

d. Extensions and Scope. The scope of this block is the Table-based Image
Data Block that follows it. This block may be modified by the Graphic
Control Extension.

e. Recommendation. None.

Local Color Table.

a. Description. This block contains a color table, which is a sequence of
bytes representing red-green-blue color triplets. The Local Color Table
is used by the image that immediately follows. Its presence is marked by
the Local Color Table Flag being set to 1 in the Image Descriptor; if
present, the Local Color Table immediately follows the Image Descriptor
and contains a number of bytes equal to

3x2"(Size of Local Color Table+l).
If present, this color table temporarily becomes the active color table
and the following image should be processed using it. This block is
OPTIONAL; at most one Local Color Table may be present per Image
Descriptor and its scope is the single image associated with the Image
Descriptor that precedes it.

b. Required Version. 87a.

14

c. Syntax.

76543210 Field Name Type
| | Red 0 Byte
- -+
| | Green 0 Byte
- -+
| | Blue 0 Byte
- -+
| | Red 1 Byte
- -+
| | Green 1 Byte
- -+
| |
+- e e -+ cen
| |
- -+
| | Green 255 Byte
- -+
| | Blue 255 Byte

d. Extensions and Scope. The scope of this block is the Table-based Image
Data Block that immediately follows it. This block cannot be modified by
any extension.

e. Recommendations. None.

22. Table Based Image Data.

a. Description. The image data for a table based image consists of a
sequence of sub-blocks, of size at most 255 bytes each, containing an
index into the active color table, for each pixel in the image. Pixel
indices are in order of left to right and from top to bottom. Each index
must be within the range of the size of the active color table, starting
at 0. The sequence of indices is encoded using the LZW Algorithm with
variable-length code, as described in Appendix F

b. Required Version. 87a.

c. Syntax. The image data format is as follows:

76543210 Field Name Type
[T +
| | LZW Minimum Code Size Byte
[TR +
Image Data Data Sub-blocks

+—~— +
o~ +

15

i) LZW Minimum Code Size. This byte determines the initial number
of bits used for LZW codes in the image data, as described in
Appendix F.

d. Extensions and Scope. This block has no scope, it contains raster
data. Extensions intended to modify a Table-based image must appear

before the corresponding Image Descriptor.

e. Recommendations. None.

23. Graphic Control Extension.

a. Description. The Graphic Control Extension contains parameters used
when processing a graphic rendering block. The scope of this extension is
the first graphic rendering block to follow. The extension contains only
one data sub-block.

This block is OPTIONAL; at most one Graphic Control Extension may precede
a graphic rendering block. This is the only limit to the number of
Graphic Control Extensions that may be contained in a Data Stream.

b. Required Version. 89a.

c. Syntax.

76543210 Field Name Type
R +
0 | | Extension Introducer Byte
R +
1| | Graphic Control Label Byte
R +
R +
0 | | Block Size Byte
R +
1| []] <Packed Fields> See below

| Delay Time Unsigned

+- -+

[T S +

| | Transparent Color Index Byte

[T S +

[T +

| Block Terminator Byte

[T S +

<Packed Fields> = Reserved 3 Bits
Disposal Method 3 Bits
User Input Flag 1 Bit
Transparent Color Flag 1 Bit

i) Extension Introducer - Identifies the beginning of an extension

16

block. This field contains the fixed value 0x21.

ii) Graphic Control Label - Identifies the current block as a
Graphic Control Extension. This field contains the fixed value
0xF9.

iii) Block Size - Number of bytes in the block, after the Block
Size field and up to but not including the Block Terminator. This
field contains the fixed value 4.

iv) Disposal Method - Indicates the way in which the graphic is to
be treated after being displayed.

Values : 0 - No disposal specified. The decoder is
not required to take any action.
1 - Do not dispose. The graphic is to be left
in place.
2 - Restore to background color. The area used by the
graphic must be restored to the background color.
3 - Restore to previous. The decoder is required to

restore the area overwritten by the graphic with
what was there prior to rendering the graphic.
4-7 - To be defined.

v) User Input Flag - Indicates whether or not user input is
expected before continuing. If the flag is set, processing will
continue when user input is entered. The nature of the User input
is determined by the application (Carriage Return, Mouse Button
Click, etc.).

Values : 0 - User input is not expected.
1 - User input is expected.

When a Delay Time is used and the User Input Flag is set,
processing will continue when user input is received or when the
delay time expires, whichever occurs first.

vi) Transparency Flag - Indicates whether a transparency index is
given in the Transparent Index field. (This field is the least

significant bit of the byte.)

Values : 0 - Transparent Index is not given.
1 - Transparent Index is given.

vii) Delay Time - If not 0, this field specifies the number of

hundredths (1/100) of a second to wait before continuing with the
processing of the Data Stream. The clock starts ticking immediately
after the graphic is rendered. This field may be used in
conjunction with the User Input Flag field.

viii) Transparency Index - The Transparency Index is such that when
encountered, the corresponding pixel of the display device is not
modified and processing goes on to the next pixel. The index is
present if and only if the Transparency Flag is set to 1.

ix) Block Terminator - This zero-length data block marks the end of

17
the Graphic Control Extension.

d. Extensions and Scope. The scope of this Extension is the graphic
rendering block that follows it; it is possible for other extensions to
be present between this block and its target. This block can modify the
Image Descriptor Block and the Plain Text Extension.

e. Recommendations.

i) Disposal Method - The mode Restore To Previous is intended to be
used in small sections of the graphic; the use of this mode imposes
severe demands on the decoder to store the section of the graphic
that needs to be saved. For this reason, this mode should be used
sparingly. This mode is not intended to save an entire graphic or
large areas of a graphic; when this is the case, the encoder should
make every attempt to make the sections of the graphic to be
restored be separate graphics in the data stream. In the case where
a decoder is not capable of saving an area of a graphic marked as
Restore To Previous, it is recommended that a decoder restore to
the background color.

ii) User Input Flag - When the flag is set, indicating that user
input is expected, the decoder may sound the bell (0x07) to alert
the user that input is being expected. In the absence of a
specified Delay Time, the decoder should wait for user input
indefinitely. It is recommended that the encoder not set the User
Input Flag without a Delay Time specified.

24. Comment Extension.

a. Description. The Comment Extension contains textual information which
is not part of the actual graphics in the GIF Data Stream. It is suitable
for including comments about the graphics, credits, descriptions or any
other type of non-control and non-graphic data. The Comment Extension
may be ignored by the decoder, or it may be saved for later processing;
under no circumstances should a Comment Extension disrupt or interfere
with the processing of the Data Stream.

This block is OPTIONAL; any number of them may appear in the Data Stream.

b. Required Version. 89a.

18

c. Syntax.
76543210 Field Name Type
VS +
0 | | Extension Introducer Byte
VS S +
1 | Comment Label Byte
VSRS +
| |
N | | Comment Data Data Sub-blocks
| |
VS +
0 | | Block Terminator Byte
VS S +

i) Extension Introducer - Identifies the beginning of an extension
block. This field contains the fixed value 0x21.

ii) Comment Label - Identifies the block as a Comment Extension.
This field contains the fixed value OxFE.

iii) Comment Data - Sequence of sub-blocks, each of size at most
255 bytes and at least 1 byte, with the size in a byte preceding
the data. The end of the sequence is marked by the Block
Terminator.

iv) Block Terminator - This zero-length data block marks the end of
the Comment Extension.

d. Extensions and Scope. This block does not have scope. This block
cannot be modified by any extension.

e. Recommendations.

i) Data - This block is intended for humans. It should contain
text using the 7-bit ASCII character set. This block should
not be used to store control information for custom processing.

ii) Position - This block may appear at any point in the Data
Stream at which a block can begin; however, it is recommended that
Comment Extensions do not interfere with Control or Data blocks;
they should be located at the beginning or at the end of the Data
Stream to the extent possible.

25. Plain Text Extension.

a. Description. The Plain Text Extension contains textual data and the
parameters necessary to render that data as a graphic, in a simple form.
The textual data will be encoded with the 7-bit printable ASCII
characters. Text data are rendered using a grid of character cells

19

defined by the parameters in the block fields. Each character is rendered
in an individual cell. The textual data in this block is to be rendered
as mono-spaced characters, one character per cell, with a best fitting
font and size. For further information, see the section on
Recommendations below. The data characters are taken sequentially from
the data portion of the block and rendered within a cell, starting with
the upper left cell in the grid and proceeding from left to right and
from top to bottom. Text data is rendered until the end of data is
reached or the character grid is filled. The Character Grid contains an
integral number of cells; in the case that the cell dimensions do not
allow for an integral number, fractional cells must be discarded; an
encoder must be careful to specify the grid dimensions accurately so that
this does not happen. This block requires a Global Color Table to be
available; the colors used by this block reference the Global Color Table
in the Stream if there is one, or the Global Color Table from a previous
Stream, if one was saved. This block is a graphic rendering block,
therefore it may be modified by a Graphic Control Extension. This block
is OPTIONAL; any number of them may appear in the Data Stream.

b. Required Version. 89a.

20

10

11

12

c. Syntax.

76543210 Field Name Type
S +

| | Extension Introducer Byte
S +

| | Plain Text Label Byte
S +
S +

| | Block Size Byte
S +

| | Text Grid Left Position Unsigned
+- -+

| |
S +

| | Text Grid Top Position Unsigned
+- -+

| |
S +

| | Text Grid Width Unsigned
+- -+

| |
S +

| | Text Grid Height Unsigned
+- -+

| |
S +

| | Character Cell Width Byte
S +

| | Character Cell Height Byte
S +

| | Text Foreground Color Index Byte
S +

| | Text Background Color Index Byte
S +

| |

| | Plain Text Data Data Sub-blocks
| |
T — +

| | Block Terminator Byte
VS ——— +

i) Extension Introducer - Identifies the beginning of an extension
block. This field contains the fixed value 0x21.

ii) Plain Text Label - Identifies the current block as a Plain Text
Extension. This field contains the fixed value 0x01.

iii) Block Size - Number of bytes in the extension, after the Block
Size field and up to but not including the beginning of the data
portion. This field contains the fixed value 12.

21

iv) Text Grid Left Position - Column number, in pixels, of the left
edge of the text grid, with respect to the left edge of the Logical
Screen.

v) Text Grid Top Position - Row number, in pixels, of the top edge
of the text grid, with respect to the top edge of the Logical
Screen.

vi) Image Grid Width - Width of the text grid in pixels.
vii) Image Grid Height - Height of the text grid in pixels.

viii) Character Cell Width - Width, in pixels, of each cell in the
grid.

ix) Character Cell Height - Height, in pixels, of each cell in the
grid.

X) Text Foreground Color Index - Index into the Global Color Table
to be used to render the text foreground.

xi) Text Background Color Index - Index into the Global Color Table
to be used to render the text background.

xii) Plain Text Data - Sequence of sub-blocks, each of size at most
255 bytes and at least 1 byte, with the size in a byte preceding
the data. The end of the sequence is marked by the Block
Terminator.

xiii) Block Terminator - This zero-length data block marks the end
of the Plain Text Data Blocks.

d. Extensions and Scope. The scope of this block is the Plain Text Data
Block contained in it. This block may be modified by the Graphic Control
Extension.

e. Recommendations. The data in the Plain Text Extension is assumed to be
preformatted. The selection of font and size is left to the discretion of
the decoder. If characters less than 0x20 or greater than 0xf7 are
encountered, it is recommended that the decoder display a Space character
(0x20). The encoder should use grid and cell dimensions such that an
integral number of cells fit in the grid both horizontally as well as
vertically. For broadest compatibility, character cell dimensions should
be around 8x8 or 8x16 (width x height); consider an image for unusual
sized text.

26. Application Extension.
a. Description. The Application Extension contains application-specific
information; it conforms with the extension block syntax, as described

below, and its block label is OXFF.

b. Required Version. 89a.

22

c. Syntax.

76543210 Field Name Type
T e +

0 | | Extension Introducer Byte
Fom e +

1 | Extension Label Byte
Fom e +
o +

(O | Block Size Byte
Fom e +

+- —+
3 | | Application Identifier 8 Bytes
+- —+
4 | |
+- —+
5 | |
+- —+
6 | |
+- —+
7| |
+- —+
8 | |
o +
9 | |
+- -+
10 | | Appl. Authentication Code 3 Bytes
+- -+
11| |
S +
| |
| | Application Data Data Sub-blocks
| |
S +
(O | Block Terminator Byte
R +

i) Extension Introducer - Defines this block as an extension. This
field contains the fixed value 0x21.

ii) Application Extension Label - Identifies the block as an
Application Extension. This field contains the fixed value OXFF.

iii) Block Size - Number of bytes in this extension block,
following the Block Size field, up to but not including the
beginning of the Application Data. This field contains the fixed
value 11.

23

iv) Application Identifier - Sequence of eight printable ASCII
characters used to identify the application owning the Application
Extension.

v) Application Authentication Code - Sequence of three bytes used
to authenticate the Application Identifier. An Application program

may use an algorithm to compute a binary code that uniquely
identifies it as the application owning the Application Extension.

d. Extensions and Scope. This block does not have scope. This block
cannot be modified by any extension.

e. Recommendation. None.

27. Trailer.

a. Description. This block is a single-field block indicating the end of
the GIF Data Stream. It contains the fixed value 0x3B.

b. Required Version. 87a.
c. Syntax.
76543210 Field Name Type
0 | | GIF Trailer Byte
d. Extensions and Scope. This block does not have scope, it terminates
the GIF Data Stream. This block may not be modified by any extension.

e. Recommendations. None.

24

Appendix
A. Quick Reference Table.

Block Name Required Label Ext. Vers.
Application Extension Opt. (*) O0xXFF (255) yes 89a
Comment Extension Opt. (*) OXFE (254) vyes 89a
Global Color Table Opt. (1) none no 87a
Graphic Control Extension Opt. (*) 0xF9 (249) yes 89a
Header Req. (1) none no N/A
Image Descriptor Opt. (*) 0x2C (044) no 87a (89a)
Local Color Table Opt. (*) none no 87a
Logical Screen Descriptor Reqg. (1) none no 87a (89a)
Plain Text Extension Opt. (*) 0x01 (001) yes 89a
Trailer Req. (1) 0x3B (059) no 87a

Unlabeled Blocks

Header Req. (1) none no N/A
Logical Screen Descriptor Req. (1) none no 87a (89a)
Global Color Table Opt. (1) none no 87a
Local Color Table Opt. (*) none no 87a

Graphic-Rendering Blocks
Plain Text Extension Opt. (*) 0x01 (001) yes 89a
Image Descriptor Opt. (%) 0x2C (044) no 87a (89a)

Control Blocks
Graphic Control Extension Opt. (*) 0xXF9 (249) vyes 89a

Special Purpose Blocks

Trailer Req. (1) 0x3B (059) no 87a
Comment Extension Opt. (*) O0XFE (254) vyes 89a
Application Extension Opt. (*) 0xXFF (255) yes 89a
legend: (1) if present, at most one occurrence
(*) Zero Oor more occurrences
(+) one or more occurrences

Notes : The Header is not subject to Version Numbers.

(89a) The Logical Screen Descriptor and the Image Descriptor retained their
syntax from version 87a to version 89a, but some fields reserved under version
87a are used under version 89a.

25

Appendix
B. GIF Grammar.

A Grammar is a form of notation to represent the sequence in which certain
objects form larger objects. A grammar is also used to represent the number of
objects that can occur at a given position. The grammar given here represents
the sequence of blocks that form the GIF Data Stream. A grammar is given by
listing its rules. Each rule consists of the left-hand side, followed by some
form of equals sign, followed by the right-hand side. In a rule, the
right-hand side describes how the left-hand side is defined. The right-hand
side consists of a sequence of entities, with the possible presence of special
symbols. The following legend defines the symbols used in this grammar for GIF.

Legend: <> grammar word
= defines symbol
* Zero Oor more occurrences
+ one or more occurrences
| alternate element
[1 optional element

Example:
<GIF Data Stream> ::= Header <Logical Screen> <Data>* Trailer

This rule defines the entity <GIF Data Stream> as follows. It must begin with a
Header. The Header is followed by an entity called Logical Screen, which is
defined below by another rule. The Logical Screen is followed by the entity
Data, which is also defined below by another rule. Finally, the entity Data is
followed by the Trailer. Since there is no rule defining the Header or the
Trailer, this means that these blocks are defined in the document. The entity
Data has a special symbol (*) following it which means that, at this position,
the entity Data may be repeated any number of times, including 0 times. For
further reading on this subject, refer to a standard text on Programming
Languages.

The Grammar.

<GIF Data Stream>

Header <Logical Screen> <Data>* Trailer

<Logical Screen> :

Logical Screen Descriptor [Global Color Table]

<Data> ::= <Graphic Block> |
<Special-Purpose Block>

<Graphic Block> ::= [Graphic Control Extension] <Graphic-Rendering Block>

<Graphic-Rendering Block> ::= <Table-Based Image> |
Plain Text Extension

<Table-Based Image> ::= Image Descriptor [Local Color Table] Image Data

<Special-Purpose Block> ::= Application Extension |
Comment Extension

26

NOTE : The grammar indicates that it is possible for a GIF Data Stream to
contain the Header, the Logical Screen Descriptor, a Global Color Table and the
GIF Trailer. This special case is used to load a GIF decoder with a Global

Color Table, in preparation for subsequent Data Streams without color tables at
all.

27

Appendix
C. Glossary.

Active Color Table - Color table used to render the next graphic. If the next
graphic is an image which has a Local Color Table associated with it, the
active color table becomes the Local Color Table associated with that image.

If the next graphic is an image without a Local Color Table, or a Plain Text
Extension, the active color table is the Global Color Table associated with the
Data Stream, if there is one; if there is no Global Color Table in the Data
Stream, the active color table is a color table saved from a previous Data
Stream, or one supplied by the decoder.

Block - Collection of bytes forming a protocol unit. In general, the term
includes labeled and unlabeled blocks, as well as Extensions.

Data Stream - The GIF Data Stream is composed of blocks and sub-blocks
representing images and graphics, together with control information to render
them on a display device. All control and data blocks in the Data Stream must
follow the Header and must precede the Trailer.

Decoder - A program capable of processing a GIF Data Stream to render the
images and graphics contained in it.

Encoder - A program capable of capturing and formatting image and graphic
raster data, following the definitions of the Graphics Interchange Format.

Extension - A protocol block labeled by the Extension Introducer 0x21.
Extension Introducer - Label (0x21) defining an Extension.

Graphic - Data which can be rendered on the screen by virtue of some algorithm.
The term graphic is more general than the term image; in addition to images,
the term graphic also includes data such as text, which is rendered using

character bit-maps.

Image - Data representing a picture or a drawing; an image is represented by an
array of pixels called the raster of the image.

Raster - Array of pixel values representing an image.

28

Appendix
D. Conventions.

Animation - The Graphics Interchange Format is not intended as a platform for
animation, even though it can be done in a limited way.

Byte Ordering - Unless otherwise stated, multi-byte numeric fields are ordered
with the Least Significant Byte first.

Color Indices - Color indices always refer to the active color table, either
the Global Color Table or the Local Color Table.

Color Order - Unless otherwise stated, all triple-component RGB color values
are specified in Red-Green-Blue order.

Color Tables - Both color tables, the Global and the Local, are optional; if
present, the Global Color Table is to be used with every image in the Data
Stream for which a Local Color Table is not given; if present, a Local Color
Table overrides the Global Color Table. However, if neither color table is
present, the application program is free to use an arbitrary color table. If
the graphics in several Data Streams are related and all use the same color
table, an encoder could place the color table as the Global Color Table in the
first Data Stream and leave subsequent Data Streams without a Global Color
Table or any Local Color Tables; in this way, the overhead for the table is
eliminated. It is recommended that the decoder save the previous Global Color
Table to be used with the Data Stream that follows, in case it does not contain
either a Global Color Table or any Local Color Tables. In general, this allows
the application program to use past color tables, significantly reducing
transmission overhead.

Extension Blocks - Extensions are defined using the Extension Introducer code
to mark the beginning of the block, followed by a block label, identifying the
type of extension. Extension Codes are numbers in the range from 0x00 to OXFF,
inclusive. Special purpose extensions are transparent to the decoder and may be
omitted when transmitting the Data Stream on-line. The GIF capabilities
dialogue makes the provision for the receiver to request the transmission of
all blocks; the default state in this regard is no transmission of Special
purpose blocks.

Reserved Fields - All Reserved Fields are expected to have each bit set to zero
(off).

Appendix
E. Interlaced Images.

29

The rows of an Interlaced images are arranged in the following order:

Group 1 : Every
Group 2 : Every
Group 3 : Every
Group 4 : Every

The Following example
ordered.

Row Number

W ~NoU s WN PO

e e e e e)
WoONOU & WN - O

8th. row, starting with row 0. (Pass 1)
8th. row, starting with row 4. (Pass 2)
4th. row, starting with row 2. (Pass 3)
2nd. row, starting with row 1. (Pass 4)

illustrates how the rows of an interlaced image are

Interlace Pass

1
4
3
4
2
4
3
4
1
4
_________________________ 3
_________________________ 4
_________________________ 2
_________________________ 4
_________________________ 3
_________________________ 4
_________________________ 1
_________________________ 4
_________________________ 3
_________________________ 4

30

Appendix
F. Variable-Length-Code LZW Compression.

The Variable-Length-Code LZW Compression is a variation of the Lempel-Ziv
Compression algorithm in which variable-length codes are used to replace
patterns detected in the original data. The algorithm uses a code or
translation table constructed from the patterns encountered in the original
data; each new pattern is entered into the table and its index is used to
replace it in the compressed stream.

The compressor takes the data from the input stream and builds a code or
translation table with the patterns as it encounters them; each new pattern is
entered into the code table and its index is added to the output stream; when a
pattern is encountered which had been detected since the last code table
refresh, its index from the code table is put on the output stream, thus
achieving the data compression. The expander takes input from the compressed
data stream and builds the code or translation table from it; as the compressed
data stream is processed, codes are used to index into the code table and the
corresponding data is put on the decompressed output stream, thus achieving
data decompression. The details of the algorithm are explained below. The
Variable-Length-Code aspect of the algorithm is based on an initial code size
(LzZW-initial code size), which specifies the initial number of bits used for
the compression codes. When the number of patterns detected by the compressor
in the input stream exceeds the number of patterns encodable with the current
number of bits, the number of bits per LZW code is increased by one.

The Raster Data stream that represents the actual output image can be
represented as:

76543210

e — +
| LZW code size |
e — +
S — + -t
| block size | |
e — + |
\ | +-- Repeated as many
data bytes | | times as necessary.
R S
.. [The code that terminates the LZW
compressed data must appear before
Block Terminator.
o +
[0000O00O0OO0| Block Terminator
o +

The conversion of the image from a series of pixel values to a transmitted or
stored character stream involves several steps. In brief these steps are:

1. Establish the Code Size - Define the number of bits needed to represent the
actual data.

2. Compress the Data - Compress the series of image pixels to a series of

31

compression codes.

3. Build a Series of Bytes - Take the set of compression codes and convert to a
string of 8-bit bytes.

4. Package the Bytes - Package sets of bytes into blocks preceded by character
counts and output.

ESTABLISH CODE SIZE

The first byte of the Compressed Data stream is a value indicating the minimum
number of bits required to represent the set of actual pixel values. Normally
this will be the same as the number of color bits. Because of some algorithmic
constraints however, black & white images which have one color bit must be
indicated as having a code size of 2.

This code size value also implies that the compression codes must start out one
bit longer.

COMPRESSION

The LZW algorithm converts a series of data values into a series of codes which
may be raw values or a code designating a series of values. Using text
characters as an analogy, the output code consists of a character or a code
representing a string of characters.

The LZW algorithm used in GIF matches algorithmically with the standard LzZw
algorithm with the following differences:

1. A special Clear code is defined which resets all compression/decompression
parameters and tables to a start-up state. The value of this code is 2**<code
size>. For example if the code size indicated was 4 (image was 4 bits/pixel)
the Clear code value would be 16 (10000 binary). The Clear code can appear at
any point in the image data stream and therefore requires the LZW algorithm to
process succeeding codes as if a new data stream was starting. Encoders should
output a Clear code as the first code of each image data stream.

2. An End of Information code is defined that explicitly indicates the end of
the image data stream. LZW processing terminates when this code is encountered.
It must be the last code output by the encoder for an image. The value of this
code is <Clear code>+1.

3. The first available compression code value is <Clear code>+2.

4. The output codes are of variable length, starting at <code size>+1 bits per
code, up to 12 bits per code. This defines a maximum code value of 4095
(OXFFF). Whenever the LZW code value would exceed the current code length, the
code length is increased by one. The packing/unpacking of these codes must then
be altered to reflect the new code length.

BUILD 8-BIT BYTES

Because the LZW compression used for GIF creates a series of variable length
codes, of between 3 and 12 bits each, these codes must be reformed into a
series of 8-bit bytes that will be the characters actually stored or

transmitted. This provides additional compression of the image. The codes are
formed into a stream of bits as if they were packed right to left and then

32

picked off 8 bits at a time to be output.

Assuming a character array of 8 bits per character and using 5 bit codes to be
packed, an example layout would be similar to:

0 | | bbbaaaaa

1 | dccececbb

2 | | eeeedddd

. +

3 | ggfffffe
. +

4 | | hhhhhggg
. +
U +

N
N +

Note that the physical packing arrangement will change as the number of bits
per compression code change but the concept remains the same.

PACKAGE THE BYTES

Once the bytes have been created, they are grouped into blocks for output by
preceding each block of 0 to 255 bytes with a character count byte. A block
with a zero byte count terminates the Raster Data stream for a given image.
These blocks are what are actually output for the GIF image. This block format
has the side effect of allowing a decoding program the ability to read past the
actual image data if necessary by reading block counts and then skipping over
the data.

FURTHER READING

[1] Ziv, J. and Lempel, A. : "A Universal Algorithm for Sequential Data

Compression", IEEE Transactions on Information Theory, May 1977.

[2] Welch, T. : "A Technique for High-Performance Data Compression", Computer,

June 1984.

[3] Nelson, M.R. : "LZW Data Compression", Dr. Dobb's Journal, October 1989.
33

Appendix

G. On-line Capabilities Dialogue.

NOTE : This section is currently (10 July 1990) under revision; the information
provided here should be used as general guidelines. Code written based on this
information should be designed in a flexible way to accommodate any changes
resulting from the revisions.

The following sequences are defined for use in mediating control between a GIF
sender and GIF receiver over an interactive communications line. These
sequences do not apply to applications that involve downloading of static GIF
files and are not considered part of a GIF file.

GIF CAPABILITIES ENQUIRY

The GIF Capabilities Enquiry sequence is issued from a host and requests an
interactive GIF decoder to return a response message that defines the graphics
parameters for the decoder. This involves returning information about available

screen sizes, number of bits/color supported and the amount of color detail
supported. The escape sequence for the GIF Capabilities Enquiry is defined as:

ESC[>0g 0x1B 0x5B 0x3E 0x30 0x67

GIF CAPABILITIES RESPONSE

The GIF Capabilities Response message is returned by an interactive GIF decoder
and defines the decoder's display capabilities for all graphics modes that are

supported by the software. Note that this can also include graphics printers as

well as a monitor screen. The general format of this message is:

#version;protocol{;dev, width, height, color-bits, color-res}...<CR>

"#! GIF Capabilities Response identifier character.

version GIF format version number; initially '87a'.

protocol='0" No end-to-end protocol supported by decoder Transfer as direct
8-bit data stream.

protocol="1" Can use CIS B+ error correction protocol to transfer GIF data
interactively from the host directly to the display.

dev = '0' Screen parameter set follows.

dev = '1' Printer parameter set follows.

width Maximum supported display width in pixels.

height Maximum supported display height in pixels.

color-bits Number of bits per pixel supported. The number of supported
colors is therefore 2**color-bits.

color-res Number of bits per color component supported in the hardware

color palette. If color-res is '0O' then no hardware palette
table is available.

Note that all values in the GIF Capabilities Response are returned as ASCII
decimal numbers and the message is terminated by a Carriage Return character.

The following GIF Capabilities Response message describes three standard IBM PC
Enhanced Graphics Adapter configurations with no printer; the GIF data stream

34

can be processed within an error correcting protocol:
#87a;1;0,320,200,4,0;0,640,200,2,2;0,640,350,4,2<CR>

ENTER GIF GRAPHICS MODE

Two sequences are currently defined to invoke an interactive GIF decoder into
action. The only difference between them is that different output media are
selected. These sequences are:

ESC[>1g Display GIF image on screen

0x1B 0x5B 0x3E 0x31 0x67

ESC[>2g Display image directly to an attached graphics printer. The image may
optionally be displayed on the screen as well.

0x1B 0x5B 0x3E 0x32 0x67
Note that the 'g' character terminating each sequence is in lowercase.
INTERACTIVE ENVIRONMENT

The assumed environment for the transmission of GIF image data from an
interactive application is a full 8-bit data stream from host to micro. All

256 character codes must be transferrable. The establishing of an 8-bit data
path for communications will normally be taken care of by the host application
programs. It is however up to the receiving communications programs supporting
GIF to be able to receive and pass on all 256 8-bit codes to the GIF decoder

software.

Cover Sheet for the GIF89a Specification

DEFERRED CLEAR CODE IN LZW COMPRESSION

There has been confusion about where clear codes can be found in the
data stream. As the specification says, they may appear at anytime. There
is not a requirement to send a clear code when the string table is full.

It is the encoder's decision as to when the table should be cleared. When
the table is full, the encoder can chose to use the table as is, making no
changes to it until the encoder chooses to clear it. The encoder during
this time sends out codes that are of the maximum Code Size.

As we can see from the above, when the decoder's table is full, it must
not change the table until a clear code is received. The Code Size is that
of the maximum Code Size. Processing other than this is done normally.

Because of a large base of decoders that do not handle the decompression in
this manner, we ask developers of GIF encoding software to NOT implement
this feature until at least January 1991 and later if they see that their
particular market is not ready for it. This will give developers of GIF
decoding software time to implement this feature and to get it into the
hands of their clients before the decoders start "breaking" on the new
GIF's. It is not required that encoders change their software to take
advantage of the deferred clear code, but it is for decoders.

APPLICATION EXTENSION BLOCK - APPLICATION IDENTIFIER

There will be a Courtesy Directory file located on CompuServe in the PICS
forum. This directory will contain Application Identifiers for Application
Extension Blocks that have been used by developers of GIF applications.
This file is intended to help keep developers that wish to create
Application Extension Blocks from using the same Application Identifiers.
This is not an official directory; it is for voluntary participation only
and does not guarantee that someone will not use the same identifier.

E-Mail can be sent to Larry Wood (forum manager of PICS) indicating the
request for inclusion in this file with an identifier.

GRAPHICS INTERCHANGE FORMAT (sm)
Version 89a
(c)1987,1988,1989,1990
Copyright

CompuServe Incorporated
Columbus, Ohio

CompuServe Incorporated Graphics Interchange Format
Document Date : 31 July 1990 Programming Reference

Table of Contents
DiSCLaIMEr i ettt ettt eeeeeeeeeneeaneeaeesseessssasesassssscssssssssanesnnsss
0 a0 o o

LiCENSINg . e e eeeeeeeeeeseseaeesssesesassesssesessssesssesessssssssasssnsssss

About the DoCUMENE. ..ttt iiiitieteeeeeeeneeeeeeeeasocoeoesssnssnsnsnnsanns

General DeSCription..eeeeeeeeeeeeeeeeeeeseseseesssesesesossssesesassanssese 2
VerSion NUMDEIS.uueteeeeneeeeeeeeeaneeeeeeeaonnseeeesaonnnssessssssnnnnnnnes 2
The EnCOder...cceeeecosescosccsossorsosscrsoscssssossasosasoscscssnsssosscsosssnessss 3
The DeCOder ... iereecrsescoscotsossorsosorsoscssssossasosasoscscssssssossssosssnesss 3
COMPLiANCB . s e vteeeeeeseseeoesssesessssesssasossssssssssssssssesssssssnssase 3
About RecommendationS. ... eeeeeeiiennieeeeeieeennneeeeeeeonnseeeesannnnnnaess 4
About COlor TablesS...ieeieeeieieeeeneeeneeoeesoesoosesosesossasoassaasasasaaes 4
Blocks, EXtensions and SCOPE ...t eteeeeeesesesecsssescsesossssssessssanssese 4
BlOCK SiZ@S.tiuuiiiieeetieieenneeeeeeeeoansseeeeeoonnssseessssssnssssasssannnaas D
Using GIF as an embedded ProtoCOl.....eeeeeeeeeseeesecoseesnsecssssssasnsanne D
Data SUb-bloCKS ...ttt eeieieeeeeeeeneeeseeoeesosessosesasasosassaasas 5
BloCk TeIrMiNatOr e ettt eeneneeeeeeeeeseeeeeeeonnsseeesssssssssasssannnaes 6
2 T T 1= o
Logical Screen DeSCriptOr...eieeeeeeeeeeeeeeseteseeossesseessesssesssesnsanse 8
Global Color Table....ieeeieeetieeeeaeeeoaeeoaesosesosessnssssssasasasssnssass 10
IMAge DESCriPtOr e e et eeeeeeeeeeeeeessneeosssoesssesssessssssssssesssesnses 11
Local Color Table. .. uieeetienetieeeeaeeeoaeeosesosesosesoaesosasasasnsasnnaass 13
Table Based IMAge Dat@...eeeeeeeeseeeeeesoeessosossosossssosossnsassssasonnss 14
Graphic CoOntrol EXteNnSiON...c.ceeeeeeieeeeeeeeeeneeosecesesossasseassssnnenns 15
Comment EXteNSIioN. ettt eeeeeeeeeeeeeeeeeeeeeeeonesaeeessaanssssesssnnnnnns 17
Plain TeXt EXLENSI0N. ..ttt ettt teieteieeeneeeeeeneeoneceasesossasseasscannanns 18
Application EXteNSIioN...cceeeeeeeeeeeeeeeeesetenecesssosesosesosesssesncasnns 21

o B =3 23

Quick Reference Table....ueeeeeeeeeeeeeeeseeacoassssssoassssssscssssssssnssns 24
GIF GLaAMMATI e e oo seeeoeosososossssososssossssssosssssssssssossssssssssssssssss 25
GlOSSAL Y et e sesesessesesesssosssssssossssssesssossssssssssossssssssssssnsnsss 27
[0 o3 0= 8 i o3 o = 28
Interlaced IMagES .. eeeeeeeeesssossesesosssossssssossssssssssssssssssssssosns 29
Variable-Length-Code LZW COMPreSSIiON...eeeeeeeeeeeeseeesonesonesonssnnasnns 30

On-line Capabilities DialogUe...c.ceerieeereeeeeeneeoneconesnsasceassesnnasns 33

1. Disclaimer.

The information provided herein is subject to change without notice. In no
event will CompuServe Incorporated be liable for damages, including any loss of
revenue, loss of profits or other incidental or consequential damages arising
out of the use or inability to use the information; CompuServe Incorporated
makes no claim as to the suitability of the information.

2. Foreword.

This document defines the Graphics Interchange Format(sm). The specification
given here defines version 89a, which is an extension of version 87a.

The Graphics Interchange Format(sm) as specified here should be considered
complete; any deviation from it should be considered invalid, including but not
limited to, the use of reserved or undefined fields within control or data
blocks, the inclusion of extraneous data within or between blocks, the use of
methods or algorithms not specifically listed as part of the format, etc. In
general, any and all deviations, extensions or modifications not specified in
this document should be considered to be in violation of the format and should
be avoided.

3. Licensing.

The Graphics Interchange Format(c) is the copyright property of CompuServe
Incorporated. Only CompuServe Incorporated is authorized to define, redefine,
enhance, alter, modify or change in any way the definition of the format.

CompuServe Incorporated hereby grants a limited, non-exclusive, royalty-free
license for the use of the Graphics Interchange Format(sm) in computer
software; computer software utilizing GIF(sm) must acknowledge ownership of the
Graphics Interchange Format and its Service Mark by CompuServe Incorporated, in
User and Technical Documentation. Computer software utilizing GIF, which is
distributed or may be distributed without User or Technical Documentation must
display to the screen or printer a message acknowledging ownership of the
Graphics Interchange Format and the Service Mark by CompuServe Incorporated; in
this case, the acknowledgement may be displayed in an opening screen or leading
banner, or a closing screen or trailing banner. A message such as the following
may be used:

"The Graphics Interchange Format(c) is the Copyright property of
CompuServe Incorporated. GIF(sm) is a Service Mark property of
CompuServe Incorporated."

For further information, please contact :

CompuServe Incorporated
Graphics Technology Department
5000 Arlington Center Boulevard
Columbus, Ohio 43220

U. S. A.

CompuServe Incorporated maintains a mailing list with all those individuals and
organizations who wish to receive copies of this document when it is corrected

or revised. This service is offered free of charge; please provide us with your
mailing address.

4. About the Document.

This document describes in detail the definition of the Graphics Interchange
Format. This document is intended as a programming reference; it is
recommended that the entire document be read carefully before programming,
because of the interdependence of the various parts. There is an individual
section for each of the Format blocks. Within each section, the sub-section
labeled Required Version refers to the version number that an encoder will have
to use if the corresponding block is used in the Data Stream. Within each
section, a diagram describes the individual fields in the block; the diagrams
are drawn vertically; top bytes in the diagram appear first in the Data Stream.
Bits within a byte are drawn most significant on the left end. Multi-byte
numeric fields are ordered Least Significant Byte first. Numeric constants are
represented as Hexadecimal numbers, preceded by "0x". Bit fields within a byte
are described in order from most significant bits to least significant bits.

5. General Description.

The Graphics Interchange Format(sm) defines a protocol intended for the on-line
transmission and interchange of raster graphic data in a way that is
independent of the hardware used in their creation or display.

The Graphics Interchange Format is defined in terms of blocks and sub-blocks
which contain relevant parameters and data used in the reproduction of a
graphic. A GIF Data Stream is a sequence of protocol blocks and sub-blocks
representing a collection of graphics. In general, the graphics in a Data

Stream are assumed to be related to some degree, and to share some control
information; it is recommended that encoders attempt to group together related
graphics in order to minimize hardware changes during processing and to
minimize control information overhead. For the same reason, unrelated graphics
or graphics which require resetting hardware parameters should be encoded
separately to the extent possible.

A Data Stream may originate locally, as when read from a file, or it may
originate remotely, as when transmitted over a data communications line. The
Format is defined with the assumption that an error-free Transport Level
Protocol is used for communications; the Format makes no provisions for
error-detection and error-correction.

The GIF Data Stream must be interpreted in context, that is, the application
program must rely on information external to the Data Stream to invoke the
decoder process.

6. Version Numbers.

The version number in the Header of a Data Stream is intended to identify the
minimum set of capabilities required of a decoder in order to fully process the
Data Stream. An encoder should use the earliest possible version number that
includes all the blocks used in the Data Stream. Within each block section in
this document, there is an entry labeled Required Version which specifies the

earliest version number that includes the corresponding block. The encoder
should make every attempt to use the earliest version number covering all the
blocks in the Data Stream; the unnecessary use of later version numbers will
hinder processing by some decoders.

7. The Encoder.

The Encoder is the program used to create a GIF Data Stream. From raster data
and other information, the encoder produces the necessary control and data
blocks needed for reproducing the original graphics.

The encoder has the following primary responsibilities.

- Include in the Data Stream all the necessary information to
reproduce the graphics.

- Insure that a Data Stream is labeled with the earliest possible
Version Number that will cover the definition of all the blocks in
it; this is to ensure that the largest number of decoders can
process the Data Stream.

- Ensure encoding of the graphics in such a way that the decoding
process is optimized. Avoid redundant information as much as
possible.

- To the extent possible, avoid grouping graphics which might
require resetting hardware parameters during the decoding process.

- Set to zero (off) each of the bits of each and every field
designated as reserved. Note that some fields in the Logical Screen
Descriptor and the Image Descriptor were reserved under Version
87a, but are used under version 89a.

8. The Decoder.

The Decoder is the program used to process a GIF Data Stream. It processes the

Data Stream sequentially, parsing the various blocks and sub-blocks, using the
control information to set hardware and process parameters and interpreting the
data to render the graphics.

The decoder has the following primary responsibilities.

- Process each graphic in the Data Stream in sequence, without
delays other than those specified in the control information.

- Set its hardware parameters to fit, as closely as possible, the
control information contained in the Data Stream.

9. Compliance.

An encoder or a decoder is said to comply with a given version of the Graphics
Interchange Format if and only if it fully conforms with and correctly
implements the definition of the standard associated with that version. An

encoder or a decoder may be compliant with a given version number and not
compliant with some subsequent version.

10. About Recommendations.

Each block section in this document contains an entry labeled Recommendation;
this section lists a set of recommendations intended to guide and organize the
use of the particular blocks. Such recommendations are geared towards making
the functions of encoders and decoders more efficient, as well as making
optimal use of the communications bandwidth. It is advised that these
recommendations be followed.

11. About Color Tables.

The GIF format utilizes color tables to render raster-based graphics. A color
table can have one of two different scopes: global or local. A Global Color
Table is used by all those graphics in the Data Stream which do not have a
Local Color Table associated with them. The scope of the Global Color Table is
the entire Data Stream. A Local Color Table is always associated with the
graphic that immediately follows it; the scope of a Local Color Table is
limited to that single graphic. A Local Color Table supersedes a Global Color
Table, that is, if a Data Stream contains a Global Color Table, and an image
has a Local Color Table associated with it, the decoder must save the Global
Color Table, use the Local Color Table to render the image, and then restore
the Global Color Table. Both types of color tables are optional, making it
possible for a Data Stream to contain numerous graphics without a color table
at all. For this reason, it is recommended that the decoder save the last
Global Color Table used until another Global Color Table is encountered. In
this way, a Data Stream which does not contain either a Global Color Table or
a Local Color Table may be processed using the last Global Color Table saved.
If a Global Color Table from a previous Stream is used, that table becomes the
Global Color Table of the present Stream. This is intended to reduce the
overhead incurred by color tables. In particular, it is recommended that an
encoder use only one Global Color Table if all the images in related Data
Streams can be rendered with the same table. If no color table is available at
all, the decoder is free to use a system color table or a table of its own. In
that case, the decoder may use a color table with as many colors as its
hardware is able to support; it is recommended that such a table have black and
white as its first two entries, so that monochrome images can be rendered
adequately.

The Definition of the GIF Format allows for a Data Stream to contain only the
Header, the Logical Screen Descriptor, a Global Color Table and the GIF

Trailer. Such a Data Stream would be used to load a decoder with a Global Color
Table, in preparation for subsequent Data Streams without a color table at all.

12. Blocks, Extensions and Scope.

Blocks can be classified into three groups : Control, Graphic-Rendering and
Special Purpose. Control blocks, such as the Header, the Logical Screen
Descriptor, the Graphic Control Extension and the Trailer, contain information
used to control the process of the Data Stream or information used in setting
hardware parameters. Graphic-Rendering blocks such as the Image Descriptor and

the Plain Text Extension contain information and data used to render a graphic
on the display device. Special Purpose blocks such as the Comment Extension and
the Application Extension are neither used to control the process of the Data
Stream nor do they contain information or data used to render a graphic on the
display device. With the exception of the Logical Screen Descriptor and the
Global Color Table, whose scope is the entire Data Stream, all other Control
blocks have a limited scope, restricted to the Graphic-Rendering block that
follows them. Special Purpose blocks do not delimit the scope of any Control
blocks; Special Purpose blocks are transparent to the decoding process.
Graphic-Rendering blocks and extensions are used as scope delimiters for
Control blocks and extensions. The labels used to identify labeled blocks fall
into three ranges : 0x00-0x7F (0-127) are the Graphic Rendering blocks,
excluding the Trailer (0x3B); 0x80-0xF9 (128-249) are the Control blocks;
0xFA-0XFF (250-255) are the Special Purpose blocks. These ranges are defined so
that decoders can handle block scope by appropriately identifying block labels,
even when the block itself cannot be processed.

13. Block Sizes.

The Block Size field in a block, counts the number of bytes remaining in the
block, not counting the Block Size field itself, and not counting the Block
Terminator, if one is to follow. Blocks other than Data Blocks are intended to
be of fixed length; the Block Size field is provided in order to facilitate
skipping them, not to allow their size to change in the future. Data blocks
and sub-blocks are of variable length to accommodate the amount of data.

14. Using GIF as an embedded protocol.

As an embedded protocol, GIF may be part of larger application protocols,
within which GIF is used to render graphics. In such a case, the application
protocol could define a block within which the GIF Data Stream would be
contained. The application program would then invoke a GIF decoder upon
encountering a block of type GIF. This approach is recommended in favor of
using Application Extensions, which become overhead for all other applications
that do not process them. Because a GIF Data Stream must be processed in
context, the application must rely on some means of identifying the GIF Data
Stream outside of the Stream itself.

15. Data Sub-blocks.

a. Description. Data Sub-blocks are units containing data. They do not
have a label, these blocks are processed in the context of control
blocks, wherever data blocks are specified in the format. The first byte
of the Data sub-block indicates the number of data bytes to follow. A
data sub-block may contain from 0 to 255 data bytes. The size of the
block does not account for the size byte itself, therefore, the empty
sub-block is one whose size field contains 0x00.

b. Required Version. 87a.

c. Syntax.

76543210 Field Name Type
S +

0 | | Block Size Byte
S +
1 |
+- -+
2| |
+- -+
30 |
+- -+

| | Data Values Byte
+- -+
up | |
- ...+
to | |
+- -+
| |
+- —+
255 | |
VS ——— +

i) Block Size - Number of bytes in the Data Sub-block; the size
must be within 0 and 255 bytes, inclusive.

ii) Data Values - Any 8-bit value. There must be exactly as many
Data Values as specified by the Block Size field.

d. Extensions and Scope. This type of block always occurs as part of a
larger unit. It does not have a scope of itself.

e. Recommendation. None.

16. Block Terminator.

a. Description. This zero-length Data Sub-block is used to terminate a
sequence of Data Sub-blocks. It contains a single byte in the position of
the Block Size field and does not contain data.
b. Required Version. 87a.
c. Syntax.
76543210 Field Name Type

(O | Block Size Byte

i) Block Size - Number of bytes in the Data Sub-block; this field

contains the fixed value 0x00.

ii) Data Values - This block does not contain any data.

d. Extensions and Scope. This block terminates the immediately preceding
sequence of Data Sub-blocks. This block cannot be modified by any
extension.

e. Recommendation. None.

17. Header.

a. Description. The Header identifies the GIF Data Stream in context. The
Signature field marks the beginning of the Data Stream, and the Version
field identifies the set of capabilities required of a decoder to fully
process the Data Stream. This block is REQUIRED; exactly one Header must
be present per Data Stream.

b. Required Version. Not applicable. This block is not subject to a
version number. This block must appear at the beginning of every Data

Stream.

c. Syntax.

76543210 Field Name Type
o +
0 | | Signature 3 Bytes
+- —+
1 |
+- —+
2| |
o +
3 | | Version 3 Bytes
+- —+
4| |
+- —+
5 | |
o +

i) Signature - Identifies the GIF Data Stream. This field contains
the fixed value 'GIF'.

ii) Version - Version number used to format the data stream.
Identifies the minimum set of capabilities necessary to a decoder
to fully process the contents of the Data Stream.

Version Numbers as of 10 July 1990 : "87a" - May 1987
"89a" - July 1989

Version numbers are ordered numerically increasing on the first two
digits starting with 87 (87,88,...,99,00,...,85,86) and
alphabetically increasing on the third character (a,...,z).

iii) Extensions and Scope. The scope of this block is the entire
Data Stream. This block cannot be modified by any extension.

d. Recommendations.

i) Signature - This field identifies the beginning of the GIF Data
Stream; it is not intended to provide a unique signature for the
identification of the data. It is recommended that the GIF Data
Stream be identified externally by the application. (Refer to
Appendix G for on-line identification of the GIF Data Stream.)

ii) Version - ENCODER : An encoder should use the earliest possible
version number that defines all the blocks used in the Data Stream.

When two or more Data Streams are combined, the latest of the
individual version numbers should be used for the resulting Data
Stream. DECODER : A decoder should attempt to process the data
stream to the best of its ability; if it encounters a version
number which it is not capable of processing fully, it should

nevertheless, attempt to process the data stream to the best of its

ability, perhaps after warning the user that the data may be
incomplete.

18. Logical Screen Descriptor.

a. Description. The Logical Screen Descriptor contains the parameters
necessary to define the area of the display device within which the
images will be rendered. The coordinates in this block are given with
respect to the top-left corner of the virtual screen; they do not
necessarily refer to absolute coordinates on the display device. This
implies that they could refer to window coordinates in a window-based
environment or printer coordinates when a printer is used.

This block is REQUIRED; exactly one Logical Screen Descriptor must be
present per Data Stream.

b. Required Version. Not applicable. This block is not subject to a
version number. This block must appear immediately after the Header.

c. Syntax.

76543210 Field Name Type

S — +

| | Logical Screen Width Unsigned

+- -+

| |

N — +

| | Logical Screen Height Unsigned

+- -+

| |

N - +

|] | | <Packed Fields> See below

S T — +

| | Background Color Index Byte

N — +

| | Pixel Aspect Ratio Byte

S T — +

9

<Packed Fields> = Global Color Table Flag 1 Bit
Color Resolution 3 Bits
Sort Flag 1 Bit
Size of Global Color Table 3 Bits

i) Logical Screen Width - Width, in pixels, of the Logical Screen
where the images will be rendered in the displaying device.

ii) Logical Screen Height - Height, in pixels, of the Logical
Screen where the images will be rendered in the displaying device.

iii) Global Color Table Flag - Flag indicating the presence of a
Global Color Table; if the flag is set, the Global Color Table will
immediately follow the Logical Screen Descriptor. This flag also
selects the interpretation of the Background Color Index; if the
flag is set, the value of the Background Color Index field should
be used as the table index of the background color. (This field is
the most significant bit of the byte.)

Values : 0 - No Global Color Table follows, the Background
Color Index field is meaningless.
1 - A Global Color Table will immediately follow, the

Background Color Index field is meaningful.

iv) Color Resolution - Number of bits per primary color available
to the original image, minus 1. This value represents the size of
the entire palette from which the colors in the graphic were
selected, not the number of colors actually used in the graphic.
For example, if the value in this field is 3, then the palette of
the original image had 4 bits per primary color available to create
the image. This value should be set to indicate the richness of
the original palette, even if not every color from the whole
palette is available on the source machine.

v) Sort Flag - Indicates whether the Global Color Table is sorted.
If the flag is set, the Global Color Table is sorted, in order of
decreasing importance. Typically, the order would be decreasing
frequency, with most frequent color first. This assists a decoder,
with fewer available colors, in choosing the best subset of colors;
the decoder may use an initial segment of the table to render the
graphic.

Values : 0 - Not ordered.
1 - Ordered by decreasing importance, most
important color first.

vi) Size of Global Color Table - If the Global Color Table Flag is
set to 1, the value in this field is used to calculate the number
of bytes contained in the Global Color Table. To determine that
actual size of the color table, raise 2 to [the value of the field
+ 1]. Even if there is no Global Color Table specified, set this
field according to the above formula so that decoders can choose
the best graphics mode to display the stream in. (This field is
made up of the 3 least significant bits of the byte.)

vii) Background Color Index - Index into the Global Color Table for

10

the Background Color. The Background Color is the color used for
those pixels on the screen that are not covered by an image. If the
Global Color Table Flag is set to (zero), this field should be zero
and should be ignored.

viii) Pixel Aspect Ratio - Factor used to compute an approximation
of the aspect ratio of the pixel in the original image. If the
value of the field is not 0, this approximation of the aspect ratio
is computed based on the formula:

Aspect Ratio = (Pixel Aspect Ratio + 15) / 64

The Pixel Aspect Ratio is defined to be the quotient of the pixel's
width over its height. The value range in this field allows

specification of the widest pixel of 4:1 to the tallest pixel of
1:4 in increments of 1/64th.

Values : 0 - No aspect ratio information is given.
1..255 - Value used in the computation.

d. Extensions and Scope. The scope of this block is the entire Data
Stream. This block cannot be modified by any extension.

e. Recommendations. None.

19. Global Color Table.

up

to

767

a. Description. This block contains a color table, which is a sequence of
bytes representing red-green-blue color triplets. The Global Color Table
is used by images without a Local Color Table and by Plain Text
Extensions. Its presence is marked by the Global Color Table Flag being
set to 1 in the Logical Screen Descriptor; if present, it immediately
follows the Logical Screen Descriptor and contains a number of bytes
equal to

3 x 2" (Size of Global Color Table+l).

This block is OPTIONAL; at most one Global Color Table may be present
per Data Stream.

b. Required Version. 87a

11

c. Syntax.

76543210 Field Name Type
| | Red 0 Byte
- —+
| | Green 0 Byte
- —+
| | Blue 0 Byte
- —+
| | Red 1 Byte
- —+
| | Green 1 Byte
- —+
| |
+- e e . -+ “en
| |
- —+
| | Green 255 Byte
- —+
| |

Blue 255 Byte

d. Extensions and Scope. The scope of this block is the entire Data
Stream. This block cannot be modified by any extension.

e. Recommendation. None.

20. Image Descriptor.

a. Description. Each image in the Data Stream is composed of an Image
Descriptor, an optional Local Color Table, and the image data. Each
image must fit within the boundaries of the Logical Screen, as defined
in the Logical Screen Descriptor.

The Image Descriptor contains the parameters necessary to process a table
based image. The coordinates given in this block refer to coordinates
within the Logical Screen, and are given in pixels. This block is a
Graphic-Rendering Block, optionally preceded by one or more Control
blocks such as the Graphic Control Extension, and may be optionally
followed by a Local Color Table; the Image Descriptor is always followed
by the image data.

This block is REQUIRED for an image. Exactly one Image Descriptor must
be present per image in the Data Stream. An unlimited number of images

may be present per Data Stream.

b. Required Version. 87a.

12

c. Syntax.

76543210 Field Name Type
R +
0o | | Image Separator Byte
S +
1| | Image Left Position Unsigned
+- -+
2| |
S +
3 | Image Top Position Unsigned
+- -+
4 | |
S +
5 | | Image Width Unsigned
+- -+
6 | |
S +
7 | | Image Height Unsigned
+- -+
8 | |
S +
9 ||| | \ | <Packed Fields> See below
S +
<Packed Fields> = Local Color Table Flag 1 Bit
Interlace Flag 1 Bit

Sort Flag 1 Bit

21.

Reserved 2 Bits
Size of Local Color Table 3 Bits

i) Image Separator - Identifies the beginning of an Image
Descriptor. This field contains the fixed value 0x2C.

ii) Image Left Position - Column number, in pixels, of the left edge
of the image, with respect to the left edge of the Logical Screen.
Leftmost column of the Logical Screen is 0.

iii) Image Top Position - Row number, in pixels, of the top edge of
the image with respect to the top edge of the Logical Screen. Top
row of the Logical Screen is 0.

iv) Image Width - Width of the image in pixels.

v) Image Height - Height of the image in pixels.

vi) Local Color Table Flag - Indicates the presence of a Local Color

Table immediately following this Image Descriptor. (This field is
the most significant bit of the byte.)

Values : 0 - Local Color Table is not present. Use
Global Color Table if available.
1 - Local Color Table present, and to follow

immediately after this Image Descriptor.

13

vii) Interlace Flag - Indicates if the image is interlaced. An image
is interlaced in a four-pass interlace pattern; see Appendix E for
details.

Values : 0 - Image is not interlaced.
1 - Image is interlaced.

viii) Sort Flag - Indicates whether the Local Color Table is
sorted. If the flag is set, the Local Color Table is sorted, in
order of decreasing importance. Typically, the order would be
decreasing frequency, with most frequent color first. This assists
a decoder, with fewer available colors, in choosing the best subset
of colors; the decoder may use an initial segment of the table to
render the graphic.

Values : 0 - Not ordered.
1 - Ordered by decreasing importance, most
important color first.

ix) Size of Local Color Table - If the Local Color Table Flag is
set to 1, the value in this field is used to calculate the number
of bytes contained in the Local Color Table. To determine that
actual size of the color table, raise 2 to the value of the field
+ 1. This value should be 0 if there is no Local Color Table
specified. (This field is made up of the 3 least significant bits
of the byte.)

d. Extensions and Scope. The scope of this block is the Table-based Image
Data Block that follows it. This block may be modified by the Graphic

Control Extension.

e. Recommendation. None.

Local Color Table.

up

to

a. Description. This block contains a color table, which is a sequence of
bytes representing red-green-blue color triplets. The Local Color Table
is used by the image that immediately follows. Its presence is marked by
the Local Color Table Flag being set to 1 in the Image Descriptor; if
present, the Local Color Table immediately follows the Image Descriptor
and contains a number of bytes equal to

3x2" (Size of Local Color Table+l).
If present, this color table temporarily becomes the active color table
and the following image should be processed using it. This block is
OPTIONAL; at most one Local Color Table may be present per Image
Descriptor and its scope is the single image associated with the Image
Descriptor that precedes it.

b. Required Version. 87a.

14

c. Syntax.

76543210 Field Name Type
| | Red 0 Byte
+- -+
| | Green 0 Byte
+- -+
| | Blue 0 Byte
+- -+
| | Red 1 Byte
+- -+
| | Green 1 Byte
+- -+
| |
- oo oo -+ .
| |
+- -+
| | Green 255 Byte
+- -+
| | Blue 255 Byte

d. Extensions and Scope. The scope of this block is the Table-based Image
Data Block that immediately follows it. This block cannot be modified by
any extension.

e. Recommendations. None.

22. Table Based Image Data.

a. Description. The image data for a table based image consists of a
sequence of sub-blocks, of size at most 255 bytes each, containing an
index into the active color table, for each pixel in the image. Pixel
indices are in order of left to right and from top to bottom. Each index
must be within the range of the size of the active color table, starting
at 0. The sequence of indices is encoded using the LZW Algorithm with
variable-length code, as described in Appendix F

b. Required Version. 87a.

c. Syntax. The image data format is as follows:

76543210 Field Name Type
Fm +
| | LZW Minimum Code Size Byte
Fm +
Image Data Data Sub-blocks

+— ~— +
+— ~— +

15

i) LZW Minimum Code Size. This byte determines the initial number
of bits used for LZW codes in the image data, as described in
Appendix F.

d. Extensions and Scope. This block has no scope, it contains raster
data. Extensions intended to modify a Table-based image must appear

before the corresponding Image Descriptor.

e. Recommendations. None.

23. Graphic Control Extension.

a. Description. The Graphic Control Extension contains parameters used
when processing a graphic rendering block. The scope of this extension is
the first graphic rendering block to follow. The extension contains only
one data sub-block.

This block is OPTIONAL; at most one Graphic Control Extension may precede
a graphic rendering block. This is the only limit to the number of

Graphic Control Extensions that may be contained in a Data Stream.

b. Required Version. 89a.

c. Syntax.

76543210 Field Name Type
S, +

| | Extension Introducer Byte
S, +

| | Graphic Control Label Byte
S, +
S, +

| | Block Size Byte
. +

| |] <Packed Fields> See below
S, +

| | Delay Time Unsigned
- —+
R .

| | Transparent Color Index Byte
. +
. +

| Block Terminator Byte

<Packed Fields> = Reserved 3 Bits

Disposal Method 3 Bits
User Input Flag 1 Bit
Transparent Color Flag 1 Bit

i) Extension Introducer - Identifies the beginning of an extension

16

block. This field contains the fixed value 0x21.

ii) Graphic Control Label - Identifies the current block as a
Graphic Control Extension. This field contains the fixed value
0xF9.

iii) Block Size - Number of bytes in the block, after the Block
Size field and up to but not including the Block Terminator. This
field contains the fixed value 4.

iv) Disposal Method - Indicates the way in which the graphic is to
be treated after being displayed.

Values : 0 - No disposal specified. The decoder is
not required to take any action.
1 - Do not dispose. The graphic is to be left
in place.
2 - Restore to background color. The area used by the
graphic must be restored to the background color.
3 - Restore to previous. The decoder is required to

restore the area overwritten by the graphic with
what was there prior to rendering the graphic.
4-7 - To be defined.

v) User Input Flag - Indicates whether or not user input is
expected before continuing. If the flag is set, processing will
continue when user input is entered. The nature of the User input
is determined by the application (Carriage Return, Mouse Button
Click, etc.).

Values : 0 - User input is not expected.
1 - User input is expected.

When a Delay Time is used and the User Input Flag is set,
processing will continue when user input is received or when the
delay time expires, whichever occurs first.

vi) Transparency Flag - Indicates whether a transparency index is
given in the Transparent Index field. (This field is the least
significant bit of the byte.)

Values : 0 - Transparent Index is not given.
1 - Transparent Index is given.

vii) Delay Time - If not 0, this field specifies the number of
hundredths (1/100) of a second to wait before continuing with the
processing of the Data Stream. The clock starts ticking immediately
after the graphic is rendered. This field may be used in
conjunction with the User Input Flag field.

viii) Transparency Index - The Transparency Index is such that when
encountered, the corresponding pixel of the display device is not
modified and processing goes on to the next pixel. The index is
present if and only if the Transparency Flag is set to 1.

ix) Block Terminator - This zero-length data block marks the end of

17
the Graphic Control Extension.

d. Extensions and Scope. The scope of this Extension is the graphic
rendering block that follows it; it is possible for other extensions to
be present between this block and its target. This block can modify the
Image Descriptor Block and the Plain Text Extension.

e. Recommendations.

i) Disposal Method - The mode Restore To Previous is intended to be
used in small sections of the graphic; the use of this mode imposes
severe demands on the decoder to store the section of the graphic
that needs to be saved. For this reason, this mode should be used
sparingly. This mode is not intended to save an entire graphic or
large areas of a graphic; when this is the case, the encoder should
make every attempt to make the sections of the graphic to be
restored be separate graphics in the data stream. In the case where
a decoder is not capable of saving an area of a graphic marked as
Restore To Previous, it is recommended that a decoder restore to
the background color.

ii) User Input Flag - When the flag is set, indicating that user
input is expected, the decoder may sound the bell (0x07) to alert
the user that input is being expected. In the absence of a
specified Delay Time, the decoder should wait for user input
indefinitely. It is recommended that the encoder not set the User
Input Flag without a Delay Time specified.

24. Comment Extension.

a. Description. The Comment Extension contains textual information which
is not part of the actual graphics in the GIF Data Stream. It is suitable
for including comments about the graphics, credits, descriptions or any
other type of non-control and non-graphic data. The Comment Extension
may be ignored by the decoder, or it may be saved for later processing;
under no circumstances should a Comment Extension disrupt or interfere
with the processing of the Data Stream.

This block is OPTIONAL; any number of them may appear in the Data Stream.

b. Required Version. 89a.

18

c. Syntax.

76543210 Field Name Type
o +
(O | Extension Introducer Byte
o +
1 | Comment Label Byte
o +
| |
N | | Comment Data Data Sub-blocks
| |
o +
(O | Block Terminator Byte
o +

i) Extension Introducer - Identifies the beginning of an extension
block. This field contains the fixed value 0x21.

ii) Comment Label - Identifies the block as a Comment Extension.
This field contains the fixed value OxFE.

iii) Comment Data - Sequence of sub-blocks, each of size at most
255 bytes and at least 1 byte, with the size in a byte preceding
the data. The end of the sequence is marked by the Block
Terminator.

iv) Block Terminator - This zero-length data block marks the end of
the Comment Extension.

d. Extensions and Scope. This block does not have scope. This block
cannot be modified by any extension.

e. Recommendations.

i) Data - This block is intended for humans. It should contain
text using the 7-bit ASCII character set. This block should
not be used to store control information for custom processing.

ii) Position - This block may appear at any point in the Data
Stream at which a block can begin; however, it is recommended that
Comment Extensions do not interfere with Control or Data blocks;
they should be located at the beginning or at the end of the Data
Stream to the extent possible.

25. Plain Text Extension.

a. Description. The Plain Text Extension contains textual data and the
parameters necessary to render that data as a graphic, in a simple form.
The textual data will be encoded with the 7-bit printable ASCII
characters. Text data are rendered using a grid of character cells

19

defined by the parameters in the block fields. Each character is rendered
in an individual cell. The textual data in this block is to be rendered
as mono-spaced characters, one character per cell, with a best fitting
font and size. For further information, see the section on

Recommendations below. The data characters are taken sequentially from
the data portion of the block and rendered within a cell, starting with
the upper left cell in the grid and proceeding from left to right and
from top to bottom. Text data is rendered until the end of data is
reached or the character grid is filled. The Character Grid contains an
integral number of cells; in the case that the cell dimensions do not
allow for an integral number, fractional cells must be discarded; an
encoder must be careful to specify the grid dimensions accurately so that
this does not happen. This block requires a Global Color Table to be
available; the colors used by this block reference the Global Color Table
in the Stream if there is one, or the Global Color Table from a previous
Stream, if one was saved. This block is a graphic rendering block,
therefore it may be modified by a Graphic Control Extension. This block
is OPTIONAL; any number of them may appear in the Data Stream.

b. Required Version. 89a.

20

c. Syntax.
76543210 Field Name Type
o +
| Extension Introducer Byte
o +
| Plain Text Label Byte
o +
o +

Block Size Byte

10

11

12

S, +
| | Text Grid Left Position Unsigned
- -+

| |

. +

| | Text Grid Top Position Unsigned
- -+

| |

S, +

| | Text Grid Width Unsigned
- -+

| |

. +

| | Text Grid Height Unsigned
. -+

| |

. +

| | Character Cell Width Byte
. +

| | Character Cell Height Byte
. +

| | Text Foreground Color Index Byte
. +

| | Text Background Color Index Byte
. +

| |

| | Plain Text Data Data Sub-blocks
| |

. +

| Block Terminator Byte
. +

i) Extension Introducer - Identifies the beginning of an extension
block. This field contains the fixed value 0x21.

ii) Plain Text Label - Identifies the current block as a Plain Text
Extension. This field contains the fixed value 0x01.

iii) Block Size - Number of bytes in the extension, after the Block

Size field and up to but not including the beginning of the data
portion. This field contains the fixed value 12.

21

iv) Text Grid Left Position - Column number, in pixels, of the left
edge of the text grid, with respect to the left edge of the Logical
Screen.

v) Text Grid Top Position - Row number, in pixels, of the top edge
of the text grid, with respect to the top edge of the Logical
Screen.

vi) Image Grid wWidth - Width of the text grid in pixels.

vii) Image Grid Height - Height of the text grid in pixels.

viii) Character Cell Width - Width, in pixels, of each cell in the
grid.

ix) Character Cell Height - Height, in pixels, of each cell in the
grid.

x) Text Foreground Color Index - Index into the Global Color Table
to be used to render the text foreground.

xi) Text Background Color Index - Index into the Global Color Table
to be used to render the text background.

xii) Plain Text Data - Sequence of sub-blocks, each of size at most
255 bytes and at least 1 byte, with the size in a byte preceding
the data. The end of the sequence is marked by the Block
Terminator.

xiii) Block Terminator - This zero-length data block marks the end
of the Plain Text Data Blocks.

d. Extensions and Scope. The scope of this block is the Plain Text Data
Block contained in it. This block may be modified by the Graphic Control
Extension.

e. Recommendations. The data in the Plain Text Extension is assumed to be
preformatted. The selection of font and size is left to the discretion of
the decoder. If characters less than 0x20 or greater than 0xf7 are
encountered, it is recommended that the decoder display a Space character
(0x20). The encoder should use grid and cell dimensions such that an
integral number of cells fit in the grid both horizontally as well as
vertically. For broadest compatibility, character cell dimensions should
be around 8x8 or 8x16 (width x height); consider an image for unusual
sized text.

26. Application Extension.
a. Description. The Application Extension contains application-specific
information; it conforms with the extension block syntax, as described

below, and its block label is O0OXFF.

b. Required Version. 89a.

22

c. Syntax.

76543210 Field Name Type
S +
0 | | Extension Introducer Byte
S +
1 | Extension Label Byte
S +
T — +
0 | | Block Size Byte
T — +
1| |
+- -+
2| |
+- -+
3 | | Application Identifier 8 Bytes
+- —+
4 | |
+- —+
5 | |
+- —+
6 | |
+- —+

8 | |
. +

9 | |
- —+

10 | | Appl. Authentication Code 3 Bytes
- —+

11| |
. +
| |
| | Application Data Data Sub-blocks
| |
. +

0 | | Block Terminator Byte
S, +

i) Extension Introducer - Defines this block as an extension. This
field contains the fixed value 0x21.

ii) Application Extension Label - Identifies the block as an
Application Extension. This field contains the fixed value OXFF.

iii) Block Size - Number of bytes in this extension block,
following the Block Size field, up to but not including the

beginning of the Application Data. This field contains the fixed
value 11.

23

iv) Application Identifier - Sequence of eight printable ASCII
characters used to identify the application owning the Application
Extension.

v) Application Authentication Code - Sequence of three bytes used
to authenticate the Application Identifier. An Application program

may use an algorithm to compute a binary code that uniquely
identifies it as the application owning the Application Extension.

d. Extensions and Scope. This block does not have scope. This block
cannot be modified by any extension.

e. Recommendation. None.

27. Trailer.

a. Description. This block is a single-field block indicating the end of
the GIF Data Stream. It contains the fixed value 0x3B.

b. Required Version. 87a.

c. Syntax.

76543210 Field Name Type
0o | | GIF Trailer Byte

d. Extensions and Scope. This block does not have scope, it terminates
the GIF Data Stream. This block may not be modified by any extension.

e. Recommendations. None.

24

Appendix
A. Quick Reference Table.

Block Name Required Label Ext. Vers.
Application Extension Opt. (*) O0xXFF (255) yes 89a
Comment Extension Opt. (*) OXFE (254) yes 89a
Global Color Table Opt. (1) none no 87a
Graphic Control Extension Opt. (*) 0xF9 (249) vyes 89a
Header Req. (1) none no N/A
Image Descriptor Opt. (*) 0x2C (044) no 87a (89a)
Local Color Table Opt. (*) none no 87a
Logical Screen Descriptor Reqg. (1) none no 87a (89a)
Plain Text Extension Opt. (*) 0x01 (001) yes 89a
Trailer Reqg. (1) 0x3B (059) no 87a

Unlabeled Blocks

Header Reqg. (1) none no N/A
Logical Screen Descriptor Reqg. (1) none no 87a (89a)
Global Color Table Opt. (1) none no 87a
Local Color Table Opt. (*) none no 87a

Graphic-Rendering Blocks
Plain Text Extension Opt. (*) 0x01 (001) yes 89a
Image Descriptor Opt. (*) 0x2C (044) no 87a (89a)

Control Blocks
Graphic Control Extension Opt. (*) 0xF9 (249) yes 89a

Special Purpose Blocks

Trailer Reqg. (1) 0x3B (059) no 87a
Comment Extension Opt. (%) OxXFE (254) yes 89%a
Application Extension Opt. (*) 0XFF (255) vyes 89a
legend: (1) if present, at most one occurrence
(*) Zero Oor more occurrences
(+) one or more occurrences

Notes : The Header is not subject to Version Numbers.
(89a) The Logical Screen Descriptor and the Image Descriptor retained their

syntax from version 87a to version 89a, but some fields reserved under version
87a are used under version 89a.

25

Appendix
B. GIF Grammar.

A Grammar is a form of notation to represent the sequence in which certain
objects form larger objects. A grammar is also used to represent the number of
objects that can occur at a given position. The grammar given here represents
the sequence of blocks that form the GIF Data Stream. A grammar is given by
listing its rules. Each rule consists of the left-hand side, followed by some
form of equals sign, followed by the right-hand side. In a rule, the
right-hand side describes how the left-hand side is defined. The right-hand
side consists of a sequence of entities, with the possible presence of special
symbols. The following legend defines the symbols used in this grammar for GIF.

Legend: <> grammar word
3= defines symbol
* Zero or more occurrences
+ one or more occurrences
| alternate element
[1 optional element

Example:
<GIF Data Stream> ::= Header <Logical Screen> <Data>* Trailer

This rule defines the entity <GIF Data Stream> as follows. It must begin with a
Header. The Header is followed by an entity called Logical Screen, which is
defined below by another rule. The Logical Screen is followed by the entity
Data, which is also defined below by another rule. Finally, the entity Data is
followed by the Trailer. Since there is no rule defining the Header or the
Trailer, this means that these blocks are defined in the document. The entity
Data has a special symbol (*) following it which means that, at this position,
the entity Data may be repeated any number of times, including 0 times. For
further reading on this subject, refer to a standard text on Programming
Languages.

The Grammar.

<GIF Data Stream> ::= Header <Logical Screen> <Data>* Trailer
<Logical Screen> ::= Logical Screen Descriptor [Global Color Table]
<Data> ::= <Graphic Block> |

<Special-Purpose Block>

<Graphic Block> ::= [Graphic Control Extension] <Graphic-Rendering Block>

<Graphic-Rendering Block> ::= <Table-Based Image> |
Plain Text Extension

<Table-Based Image> ::= Image Descriptor [Local Color Table] Image Data

<Special-Purpose Block> ::= Application Extension |
Comment Extension

26

NOTE : The grammar indicates that it is possible for a GIF Data Stream to
contain the Header, the Logical Screen Descriptor, a Global Color Table and the
GIF Trailer. This special case is used to load a GIF decoder with a Global
Color Table, in preparation for subsequent Data Streams without color tables at
all.

27

Appendix
C. Glossary.

Active Color Table - Color table used to render the next graphic. If the next
graphic is an image which has a Local Color Table associated with it, the
active color table becomes the Local Color Table associated with that image.

If the next graphic is an image without a Local Color Table, or a Plain Text
Extension, the active color table is the Global Color Table associated with the
Data Stream, if there is one; if there is no Global Color Table in the Data
Stream, the active color table is a color table saved from a previous Data
Stream, or one supplied by the decoder.

Block - Collection of bytes forming a protocol unit. In general, the term
includes labeled and unlabeled blocks, as well as Extensions.

Data Stream - The GIF Data Stream is composed of blocks and sub-blocks
representing images and graphics, together with control information to render
them on a display device. All control and data blocks in the Data Stream must
follow the Header and must precede the Trailer.

Decoder - A program capable of processing a GIF Data Stream to render the
images and graphics contained in it.

Encoder - A program capable of capturing and formatting image and graphic
raster data, following the definitions of the Graphics Interchange Format.

Extension - A protocol block labeled by the Extension Introducer 0x21.
Extension Introducer - Label (0x21) defining an Extension.

Graphic - Data which can be rendered on the screen by virtue of some algorithm.
The term graphic is more general than the term image; in addition to images,
the term graphic also includes data such as text, which is rendered using

character bit-maps.

Image - Data representing a picture or a drawing; an image is represented by an
array of pixels called the raster of the image.

Raster - Array of pixel values representing an image.

28

Appendix
D. Conventions.

Animation - The Graphics Interchange Format is not intended as a platform for
animation, even though it can be done in a limited way.

Byte Ordering - Unless otherwise stated, multi-byte numeric fields are ordered
with the Least Significant Byte first.

Color Indices - Color indices always refer to the active color table, either
the Global Color Table or the Local Color Table.

Color Order - Unless otherwise stated, all triple-component RGB color values
are specified in Red-Green-Blue order.

Color Tables - Both color tables, the Global and the Local, are optional; if
present, the Global Color Table is to be used with every image in the Data
Stream for which a Local Color Table is not given; if present, a Local Color
Table overrides the Global Color Table. However, if neither color table is
present, the application program is free to use an arbitrary color table. If
the graphics in several Data Streams are related and all use the same color
table, an encoder could place the color table as the Global Color Table in the
first Data Stream and leave subsequent Data Streams without a Global Color
Table or any Local Color Tables; in this way, the overhead for the table is
eliminated. It is recommended that the decoder save the previous Global Color
Table to be used with the Data Stream that follows, in case it does not contain
either a Global Color Table or any Local Color Tables. In general, this allows
the application program to use past color tables, significantly reducing
transmission overhead.

Extension Blocks - Extensions are defined using the Extension Introducer code
to mark the beginning of the block, followed by a block label, identifying the
type of extension. Extension Codes are numbers in the range from 0x00 to OxFF,
inclusive. Special purpose extensions are transparent to the decoder and may be
omitted when transmitting the Data Stream on-line. The GIF capabilities
dialogue makes the provision for the receiver to request the transmission of
all blocks; the default state in this regard is no transmission of Special
purpose blocks.

Reserved Fields - All Reserved Fields are expected to have each bit set to zero
(off).

29

Appendix

E. Interlaced Images.

The rows of an Interlaced images are arranged

Group 1 : Every
Group 2 : Every
Group 3 : Every
Group 4 : Every

The Following example
ordered.

Row Number

0w~ WN O

el el e = R Rt}
WoONOU & WN RO

Appendix

8th.
8th.
4th.
2nd.

row,
row,
row,
row,

starting
starting
starting
starting

with
with
with
with

in the following order:

row
row
row
row

illustrates how the rows of

F. Variable-Length-Code LZW Compression.

. (Pass 1)
(Pass 2)
. (Pass 3)
(Pass 4)

=N s O

an interlaced image are

Interlace Pass

1
4
3
4
2
4
3
4
1
4
3
4
2
4
3
4
1
4
3
4
30

The Variable-Length-Code LZW Compression is a variation of the Lempel-Ziv
Compression algorithm in which variable-length codes are used to replace
patterns detected in the original data. The algorithm uses a code or
translation table constructed from the patterns encountered in the original
data; each new pattern is entered into the table and its index is used to

replace it in the compressed stream.

The compressor takes the data from the input stream and builds a code or
translation table with the patterns as it encounters them; each new pattern is
entered into the code table and its index is added to the output stream; when a
pattern is encountered which had been detected since the last code table
refresh, its index from the code table is put on the output stream, thus
achieving the data compression. The expander takes input from the compressed
data stream and builds the code or translation table from it; as the compressed
data stream is processed, codes are used to index into the code table and the
corresponding data is put on the decompressed output stream, thus achieving
data decompression. The details of the algorithm are explained below. The
Variable-Length-Code aspect of the algorithm is based on an initial code size
(LzZW-initial code size), which specifies the initial number of bits used for
the compression codes. When the number of patterns detected by the compressor
in the input stream exceeds the number of patterns encodable with the current
number of bits, the number of bits per LZW code is increased by one.

The Raster Data stream that represents the actual output image can be
represented as:

76543210

o +

| LZW code size |

o +

o + ————t

| block size | |

o + |

| | +-- Repeated as many

data bytes | | times as necessary.

S R

o o . e e e mmm————— The code that terminates the LZIW
compressed data must appear before
Block Terminator.

o +

[0 0000O0GOO| Block Terminator

o +

The conversion of the image from a series of pixel values to a transmitted or
stored character stream involves several steps. In brief these steps are:

1. Establish the Code Size - Define the number of bits needed to represent the
actual data.

2. Compress the Data - Compress the series of image pixels to a series of

31

compression codes.

3. Build a Series of Bytes - Take the set of compression codes and convert to a
string of 8-bit bytes.

4. Package the Bytes - Package sets of bytes into blocks preceded by character
counts and output.

ESTABLISH CODE SIZE

The first byte of the Compressed Data stream is a value indicating the minimum
number of bits required to represent the set of actual pixel values. Normally
this will be the same as the number of color bits. Because of some algorithmic
constraints however, black & white images which have one color bit must be
indicated as having a code size of 2.

This code size value also implies that the compression codes must start out one
bit longer.

COMPRESSION

The LZW algorithm converts a series of data values into a series of codes which
may be raw values or a code designating a series of values. Using text
characters as an analogy, the output code consists of a character or a code
representing a string of characters.

The LZW algorithm used in GIF matches algorithmically with the standard LzZW
algorithm with the following differences:

1. A special Clear code is defined which resets all compression/decompression
parameters and tables to a start-up state. The value of this code is 2**<code
size>. For example if the code size indicated was 4 (image was 4 bits/pixel)
the Clear code value would be 16 (10000 binary). The Clear code can appear at
any point in the image data stream and therefore requires the LZW algorithm to
process succeeding codes as if a new data stream was starting. Encoders should
output a Clear code as the first code of each image data stream.

2. An End of Information code is defined that explicitly indicates the end of
the image data stream. LZW processing terminates when this code is encountered.
It must be the last code output by the encoder for an image. The value of this
code is <Clear code>+1.

3. The first available compression code value is <Clear code>+2.

4. The output codes are of variable length, starting at <code size>+1 bits per
code, up to 12 bits per code. This defines a maximum code value of 4095
(OXFFF). Whenever the LZW code value would exceed the current code length, the
code length is increased by one. The packing/unpacking of these codes must then
be altered to reflect the new code length.

BUILD 8-BIT BYTES

Because the LZW compression used for GIF creates a series of variable length
codes, of between 3 and 12 bits each, these codes must be reformed into a
series of 8-bit bytes that will be the characters actually stored or

transmitted. This provides additional compression of the image. The codes are
formed into a stream of bits as if they were packed right to left and then

32

picked off 8 bits at a time to be output.

Assuming a character array of 8 bits per character and using 5 bit codes to be
packed, an example layout would be similar to:

. +

0 | | bbbaaaaa
. +

1 | dccececbb
. +

2 | | eeeedddd
. +

3 | ggfffffe
. +

4 | | hhhhhggg
. +
. +

Note that the physical packing arrangement will change as the number of bits
per compression code change but the concept remains the same.

PACKAGE THE BYTES

Once the bytes have been created, they are grouped into blocks for output by
preceding each block of 0 to 255 bytes with a character count byte. A block
with a zero byte count terminates the Raster Data stream for a given image.
These blocks are what are actually output for the GIF image. This block format
has the side effect of allowing a decoding program the ability to read past the
actual image data if necessary by reading block counts and then skipping over
the data.

FURTHER READING

[1] Ziv, J. and Lempel, A. : "A Universal Algorithm for Sequential Data

Compression", IEEE Transactions on Information Theory, May 1977.

[2] Welch, T. : "A Technique for High-Performance Data Compression", Computer,

June 1984.

[3] Nelson, M.R. : "LZW Data Compression", Dr. Dobb's Journal, October 1989.
33

Appendix

G. On-line Capabilities Dialogue.

NOTE : This section is currently (10 July 1990) under revision; the information
provided here should be used as general guidelines. Code written based on this
information should be designed in a flexible way to accommodate any changes
resulting from the revisions.

The following sequences are defined for use in mediating control between a GIF
sender and GIF receiver over an interactive communications line. These
sequences do not apply to applications that involve downloading of static GIF
files and are not considered part of a GIF file.

GIF CAPABILITIES ENQUIRY

The GIF Capabilities Enquiry sequence is issued from a host and requests an
interactive GIF decoder to return a response message that defines the graphics
parameters for the decoder. This involves returning information about available
screen sizes, number of bits/color supported and the amount of color detail
supported. The escape sequence for the GIF Capabilities Enquiry is defined as:

ESC[>0g 0x1B 0x5B O0x3E 0x30 0x67

GIF CAPABILITIES RESPONSE

The GIF Capabilities Response message is returned by an interactive GIF decoder
and defines the decoder's display capabilities for all graphics modes that are

supported by the software. Note that this can also include graphics printers as
well as a monitor screen. The general format of this message is:

#version;protocol{;dev, width, height, color-bits, color-res}...<CR>

"#' GIF Capabilities Response identifier character.

version GIF format version number; initially '87a'.

protocol='0" No end-to-end protocol supported by decoder Transfer as direct
8-bit data stream.

protocol="1" Can use CIS B+ error correction protocol to transfer GIF data
interactively from the host directly to the display.

dev = '0' Screen parameter set follows.

dev = '1' Printer parameter set follows.

width Maximum supported display width in pixels.

height Maximum supported display height in pixels.

color-bits Number of bits per pixel supported. The number of supported
colors is therefore 2**color-bits.

color-res Number of bits per color component supported in the hardware

color palette. If color-res is '0' then no hardware palette
table is available.

Note that all values in the GIF Capabilities Response are returned as ASCII
decimal numbers and the message is terminated by a Carriage Return character.

The following GIF Capabilities Response message describes three standard IBM PC
Enhanced Graphics Adapter configurations with no printer; the GIF data stream

34

can be processed within an error correcting protocol:
#87a;1;0,320,200,4,0;0,640,200,2,2;0,640,350,4,2<CR>

ENTER GIF GRAPHICS MODE

Two sequences are currently defined to invoke an interactive GIF decoder into
action. The only difference between them is that different output media are
selected. These sequences are:

ESC[>1g Display GIF image on screen

0x1B 0x5B 0x3E 0x31 0x67

ESC[>2g Display image directly to an attached graphics printer. The image may
optionally be displayed on the screen as well.

0x1B 0x5B O0x3E 0x32 0x67
Note that the 'g' character terminating each sequence is in lowercase.
INTERACTIVE ENVIRONMENT

The assumed environment for the transmission of GIF image data from an
interactive application is a full 8-bit data stream from host to micro. All
256 character codes must be transferrable. The establishing of an 8-bit data
path for communications will normally be taken care of by the host application
programs. It is however up to the receiving communications programs supporting
GIF to be able to receive and pass on all 256 8-bit codes to the GIF decoder
software.

GZIP file format specification version 4.3
Status of This Memo

This memo provides information for the Internet community. This memo does
not specify an Internet standard of any kind. Distribution of this memo is
unlimited.

IESG Note:

The IESG takes no position on the validity of any Intellectual Property
Rights statements contained in this document.

Notices
Copyright © 1996 L. Peter Deutsch

Permission is granted to copy and distribute this document for any purpose
and without charge, including translations into other languages and
incorporation into compilations, provided that the copyright notice and
this notice are preserved, and that any substantive changes or deletions
from the original are clearly marked.

A pointer to the latest version of this and related documentation in HTML
format can be found at the URL
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.

Abstract

This specification defines a lossless compressed data format that is
compatible with the widely used GZIP utility. The format includes a cyclic
redundancy check value for detecting data corruption. The format presently
uses the DEFLATE method of compression but can be easily extended to use
other compression methods. The format can be implemented readily in a
manner not covered by patents.

Table of Contents

* 1. Introduction
1.1. Purpose
1.2. Intended audience
1.3. Scope
1.4. Compliance
1.5. Definitions of terms and conventions used
1.6. Changes from previous versions
* 2. Detailed specification
o 2.1. Overall conventions
o0 2.2. File format
o 2.3. Member format
+ 2.3.1. Member header and trailer
+ 2.3.1.1. Extra field
+ 2.3.1.2. Compliance
3. References
4. Security Considerations
5. Acknowledgements
Author's Address
7. Appendix: Jean-Loup Gailly's gzip utility
8. Appendix: Sample CRC Code

O 0O O0OO0OO0OOo

O 0O O0OO0O0O0
(=)}

1. Introduction
Purpose

The purpose of this specification is to define a lossless compressed data
format that:

* Is independent of CPU type, operating system, file system, and
character set, and hence can be used for interchange;

* Can compress or decompress a data stream (as opposed to a randomly
accessible file) to produce another data stream, using only an a
priori bounded amount of intermediate storage, and hence can be used
in data communications or similar structures such as Unix filters;

* Compresses data with efficiency comparable to the best currently

available general-purpose compression methods, and in particular
considerably better than the "compress" program;

* Can be implemented readily in a manner not covered by patents, and
hence can be practiced freely;

* Is compatible with the file format produced by the current widely used
gzip utility, in that conforming decompressors will be able to read
data produced by the existing gzip compressor.

The data format defined by this specification does not attempt to:

* Provide random access to compressed data;
* Compress specialized data (e.g., raster graphics) as well as the best
currently available specialized algorithms.

Intended audience

This specification is intended for use by implementors of software to
compress data into gzip format and/or decompress data from gzip format.

The text of the specification assumes a basic background in programming at
the level of bits and other primitive data representations.

Scope

The specification specifies a compression method and a file format (the
latter assuming only that a file can store a sequence of arbitrary bytes).
It does not specify any particular interface to a file system or anything
about character sets or encodings (except for file names and comments,
which are optional).

Compliance

Unless otherwise indicated below, a compliant decompressor must be able to
accept and decompress any file that conforms to all the specifications
presented here; a compliant compressor must produce files that conform to
all the specifications presented here. The material in the appendices is
not part of the specification per se and is not relevant to compliance.

Definitions of terms and conventions used

byte: 8 bits stored or transmitted as a unit (same as an octet). (For this
specification, a byte is exactly 8 bits, even on machines which store a
character on a number of bits different from 8.) See below for the
numbering of bits within a byte.

1.6. Changes from previous versions

There have been no technical changes to the gzip format since version 4.1
of this specification. In version 4.2, some terminology was changed, and
the sample CRC code was rewritten for clarity and to eliminate the
requirement for the caller to do pre- and post-conditioning. Version 4.3 is
a conversion of the specification to RFC style.

2. Detailed specification

Overall conventions

In the diagrams below, a box like this:

+———t

| | <-- the vertical bars might be missing

E—

represents one byte; a box like this:

represents a variable number of bytes.

Bytes stored within a computer do not have a "bit order", since they are
always treated as a unit. However, a byte considered as an integer between

0 and 255 does have a most- and least-significant bit, and since we write
numbers with the most-significant digit on the left, we also write bytes
with the most-significant bit on the left. In the diagrams below, we number
the bits of a byte so that bit 0 is the least-significant bit, i.e., the
bits are numbered:

This document does not address the issue of the order in which bits of a
byte are transmitted on a bit-sequential medium, since the data format
described here is byte- rather than bit-oriented.

Within a computer, a number may occupy multiple bytes. All multi-byte
numbers in the format described here are stored with the least-significant
byte first (at the lower memory address). For example, the decimal number
520 is stored as:

U o +
[00001000|00000010 |
O o +

~ A~

| |
| + more significant byte = 2 x 256
+ less significant byte = 8

File format

A gzip file consists of a series of "members" (compressed data sets). The
format of each member is specified in the following section. The members
simply appear one after another in the file, with no additional information
before, between, or after them.

Member format

Each member has the following structure:

B et e S S S

|ID1|ID2|CM |FLG| MTIME |XFL|0S | (more-->)

S S R S S

(if FLG.FEXTRA set)

PO - t

| XLEN |...XLEN bytes of "extra field"...| (more-->)
P - +

(if FLG.FNAME set)

...original file name, zero-terminated...| (more-->)
(if FLG.FCOMMENT set)

...file comment, zero-terminated...| (more-->)

(if FLG.FHCRC set)

bt
| Crclé
bt

...compressed blocks...| (more-->)

0 1 2 3 4 5 6 7
SRR SR S)

| CRC32 | ISIZE
B et R e e e Tt

Member header and trailer

ID1 (IDentification 1)

ID2 (IDentification 2)
These have the fixed values ID1 = 31 (0x1lf, \037), ID2 = 139 (0x8b,
\213), to identify the file as being in gzip format.

CM (Compression Method)
This identifies the compression method used in the file. CM = 0-7 are
reserved. CM = 8 denotes the "deflate" compression method, which is
the one customarily used by gzip and which is documented elsewhere.
FLG (FLaGs)
This flag byte is divided into individual bits as follows:

bit 0 FTEXT
bit 1 FHCRC
bit 2 FEXTRA
bit 3 FNAME
bit 4 FCOMMENT
bit 5 reserved
bit 6 reserved
bit 7 reserved

If FTEXT is set, the file is probably ASCII text. This is an optional
indication, which the compressor may set by checking a small amount of
the input data to see whether any non-ASCII characters are present. In
case of doubt, FTEXT is cleared, indicating binary data. For systems
which have different file formats for ascii text and binary data, the
decompressor can use FTEXT to choose the appropriate format. We
deliberately do not specify the algorithm used to set this bit, since
a compressor always has the option of leaving it cleared and a
decompressor always has the option of ignoring it and letting some
other program handle issues of data conversion.

If FHCRC is set, a CRC1l6 for the gzip header is present, immediately
before the compressed data. The CRC1l6 consists of the two least
significant bytes of the CRC32 for all bytes of the gzip header up to
and not including the CRC16. [The FHCRC bit was never set by versions
of gzip up to 1.2.4, even though it was documented with a different
meaning in gzip 1.2.4.]

If FEXTRA is set, optional extra fields are present, as described in a
following section.

If FNAME is set, an original file name is present, terminated by a
zero byte. The name must consist of ISO 8859-1 (LATIN-1) characters;
on operating systems using EBCDIC or any other character set for file
names, the name must be translated to the ISO LATIN-1 character set.
This is the original name of the file being compressed, with any
directory components removed, and, if the file being compressed is on
a file system with case insensitive names, forced to lower case. There
is no original file name if the data was compressed from a source
other than a named file; for example, if the source was stdin on a
Unix system, there is no file name.

If FCOMMENT is set, a zero-terminated file comment is present. This
comment is not interpreted; it is only intended for human consumption.
The comment must consist of ISO 8859-1 (LATIN-1) characters. Line
breaks should be denoted by a single line feed character (10 decimal).

Reserved FLG bits must be zero.

MTIME (Modification TIME)
This gives the most recent modification time of the original file
being compressed. The time is in Unix format, i.e., seconds since
00:00:00 GMT, Jan. 1, 1970. (Note that this may cause problems for
MS-DOS and other systems that use local rather than Universal time.)
If the compressed data did not come from a file, MTIME is set to the
time at which compression started. MTIME = 0 means no time stamp is
available.

XFL (eXtra FLags)
These flags are available for use by specific compression methods. The
"deflate" method (CM = 8) sets these flags as follows:

XFL = 2 - compressor used maximum compression,
slowest algorithm
XFL = 4 - compressor used fastest algorithm

0S (Operating System)
This identifies the type of file system on which compression took
place. This may be useful in determining end-of-line convention for
text files. The currently defined values are as follows:

- FAT filesystem (MS-DOS, 0S/2, NT/Win32)
- Amiga
- VMS (or OpenVMS)
- Unix
VM/CMS
- Atari TOS
- HPFS filesystem (0S/2, NT)
- Macintosh
- Z-System
CP/M
10 - TOPS-20
11 - NTFS filesystem (NT)
12 - QDOS
13 - Acorn RISCOS
255 - unknown

0 oL WNKFE O
I

e}
I

XLEN (eXtra LENgth)
If FLG.FEXTRA is set, this gives the length of the optional extra
field. See below for details.

CRC32 (CRC-32)
This contains a Cyclic Redundancy Check value of the uncompressed data
computed according to CRC-32 algorithm used in the ISO 3309 standard
and in section 8.1.1.6.2 of ITU-T recommendation V.42. (See
http://www.iso.ch for ordering ISO documents. See gopher://info.itu.ch
for an online version of ITU-T V.42.)

ISIZE (Input SIZE)
This contains the size of the original (uncompressed) input data
modulo 2"32.

Extra field

If the FLG.FEXTRA bit is set, an "extra field" is present in the header,
with total length XLEN bytes. It consists of a series of subfields, each of
the form:

[T R YRR —
|sI1|sI2| LEN
[T R YRR —

... LEN bytes of subfield data ...

SI1 and SI2 provide a subfield ID, typically two ASCII letters with some
mnemonic value. Jean-Loup Gailly <gzip@prep.ai.mit.edu> is maintaining a
registry of subfield IDs; please send him any subfield ID you wish to use.
Subfield IDs with SI2 = 0 are reserved for future use. The following IDs
are currently defined:

SI1 SI2 Data

0x41 ('A') 0x70 ('P') Apollo file type information

LEN gives the length of the subfield data, excluding the 4 initial bytes.
Compliance

A compliant compressor must produce files with correct ID1, ID2, CM, CRC32,
and ISIZE, but may set all the other fields in the fixed-length part of the
header to default values (255 for 0S, 0 for all others). The compressor

must set all reserved bits to zero.

A compliant decompressor must check ID1, ID2, and CM, and provide an error
indication if any of these have incorrect values. It must examine

FEXTRA/XLEN, FNAME, FCOMMENT and FHCRC at least so it can skip over the
optional fields if they are present. It need not examine any other part of
the header or trailer; in particular, a decompressor may ignore FTEXT and
0S and always produce binary output, and still be compliant. A compliant
decompressor must give an error indication if any reserved bit is non-zero,
since such a bit could indicate the presence of a new field that would
cause subsequent data to be interpreted incorrectly.

3. References

[1] "Information Processing - 8-bit single-byte coded graphic character
sets - Part 1: Latin alphabet No.1l" (ISO 8859-1:1987). The ISO 8859-1
(Latin-1) character set is a superset of 7-bit ASCII. Files defining this
character set are available as iso_8859-1.* in
ftp://ftp.uu.net/graphics/png/documents/

[2] ISO 3309
[3] ITU-T recommendation V.42

[4] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification", available
in ftp://ftp.uu.net/pub/archiving/zip/doc/

[5] Gailly, J.-L., GZIP documentation, available as gzip-*.tar in
ftp://prep.ai.mit.edu/pub/gnu/

[6] Sarwate, D.V., "Computation of Cyclic Redundancy Checks via Table
Look-Up", Communications of the ACM, 31(8), pp.1008-1013.

[7] Schwaderer, W.D., "CRC Calculation", April 85 PC Tech Journal,
pp.118-133.

[8] ftp://ftp.adelaide.edu.au/pub/rocksoft/papers/crc_v3.txt, describing
the CRC concept.

4. Security Considerations

Any data compression method involves the reduction of redundancy in the
data. Consequently, any corruption of the data is likely to have severe
effects and be difficult to correct. Uncompressed text, on the other hand,
will probably still be readable despite the presence of some corrupted
bytes. It is recommended that systems using this data format provide some
means of validating the integrity of the compressed data, such as by
setting and checking the CRC-32 check value.

5. Acknowledgements

Trademarks cited in this document are the property of their respective
owners.

Jean-Loup Gailly designed the gzip format and wrote, with Mark Adler, the
related software described in this specification. Glenn Randers-Pehrson
converted this document to RFC and HTML format.

6. Author's Address

L. Peter Deutsch

Aladdin Enterprises

203 Santa Margarita Ave.

Menlo Park, CA 94025

Phone: (415) 322-0103 (AM only)

FAX: (415) 322-1734

EMail: <ghost@aladdin.com>

Questions about the technical content of this specification can be sent by
email to:

Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
Mark Adler <madler@alumni.caltech.edu>

Editorial comments on this specification can be sent by email to:

L. Peter Deutsch <ghost@aladdin.com> and
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>

7. Appendix: Jean-Loup Gailly's gzip utility

The most widely used implementation of gzip compression, and the original
documentation on which this specification is based, were created by
Jean-Loup Gailly <gzip@prep.ai.mit.edu>. Since this implementation is a de
facto standard, we mention some more of its features here. Again, the
material in this section is not part of the specification per se, and
implementations need not follow it to be compliant.

When compressing or decompressing a file, gzip preserves the protection,
ownership, and modification time attributes on the local file system, since
there is no provision for representing protection attributes in the gzip
file format itself. Since the file format includes a modification time, the
gzip decompressor provides a command line switch that assigns the
modification time from the file, rather than the local modification time of
the compressed input, to the decompressed output.

8. Appendix: Sample CRC Code
The following sample code represents a practical implementation of the CRC
(Cyclic Redundancy Check). (See also ISO 3309 and ITU-T V.42 for a formal

specification.)

The sample code is in the ANSI C programming language. Non C users may find
it easier to read with these hints:

& Bitwise AND operator.
~ Bitwise exclusive-OR operator.
>> Bitwise right shift operator. When applied to an

unsigned quantity, as here, right shift inserts zero
bit(s) at the left.

! Logical NOT operator.

++ "n++" increments the variable n.

OxXNNN O0x introduces a hexadecimal (base 16) constant.
Suffix L indicates a long value (at least 32 bits).

/* Table of CRCs of all 8-bit messages. */
unsigned long crc_table[256];

/* Flag: has the table been computed? Initially false. */
int crc_table computed = 0;

/* Make the table for a fast CRC. */
void make crc_table(void)
{

unsigned long c;

int n, k;

for (n = 0; n < 256; n++) {
c = (unsigned long) n;
for (k = 0; k < 8; k++) {
if (¢ & 1) {
c = 0xedb88320L "~ (c >> 1);
} else {
c =c > 1;

}
}
crc_table[n] = c;
}
crc_table_computed = 1;
}
/*

Update a running crc with the bytes buf[0..len-1] and return
the updated crc. The crc should be initialized to zero. Pre- and
post-conditioning (one's complement) is performed within this
function so it shouldn't be done by the caller. Usage example:

unsigned long crc = 0L;

while (read_ buffer(buffer, length) != EOF) {
crc = update_crc(crc, buffer, length);
}
if (crc != original_crc) error();
*/
unsigned long update_crc(unsigned long crc,
unsigned char *buf, int len)
{
unsigned long ¢ = crc "~ Oxffffffffl;
int n;

if (!crc_table_computed)
make_ crc_table();
for (n = 0; n < len; n++) {

c = crc_table[(c " buf[n]) & O0xff] * (c >> 8);

}
return ¢ " OxXfffffffflL;

}

/* Return the CRC of the bytes buf[0..len-1]. */
unsigned long crc(unsigned char *buf, int len)
{

return update crc(0L, buf, len);

}

0S/2 HELP Format
Intel byte order

Information from File Format List 2.0 by Max Maischein.

-------- ! —=CONTACT_INFO---—-—————————————————

If you notice any mistakes or omissions, please let me know! It is only
with YOUR help that the list can continue to grow. Please send

all changes to me rather than distributing a modified version of the list.

This file has been authored in the style of the INTERxxy.* file list
by Ralf Brown, and uses almost the same format.

Please read the file FILEFMTS.1ST before asking me any questions. You may find
that they have already been addressed.

Max Maischein

Max Maischein, 2:244/1106.17

Max Maischein@spam.fido.de

corion@informatik.uni-frankfurt.de

Corion on #coders@IRC

———————— ! -DISCLAIMER-—=—==———————m——m——m

DISCLAIMER: THIS MATERIAL IS PROVIDED "AS IS". I verify the information
contained in this list to the best of my ability, but I cannot be held
responsible for any problems caused by use or misuse of the information,
especially for those file formats foreign to the PC, like AMIGA or SUN file
formats. If an information it is marked "guesswork" or undocumented, you
should check it carefully to make sure your program will not break with
an unexpected value (and please let me know whether or not it works

the same way).

Information marked with "???" is known to be incomplete or guesswork.

Some file formats were not released by their creators, others are regarded
as proprietary, which means that if your programs deal with them, you might
be looking for trouble. I don't care about this.

The 0S/2 help files are different from the WinHelp help files,since the WinHelp
format is proprietary to MicroSoft because of the patented LZ-packing they
implemented.

OFFSET Count TYPE Description
0000h 3 char ID="HSP'
0003h 1 byte Flags :

0 - INF style file
1-3 - unknown

4 - HLP style file
Patching this file allows reading HLP files
using the VIEW command, while HLP files seem to
work with INF settings as well.

0005h 1 word Total size of header

0007h 1 word Unknown

?2?2?2?h other data

0047h ? char ASCIIZ name of the HLP/INF file

EXTENSION:HLP, INF
OCCURENCES:0S/2
REFERENCE : INF02A.DOC
SEE ALSO:WinHelp HLP

Macintosh 7 & 8 bit File Transfer Format - Protocol Independent

Here is a description of the Hgx7 (7 bit format as implemented in BinHex
4.0) and Hgx8 (8 bit format) formats for Macintosh Application and File
transfers. The main features of the formats are:

1) Error checking even using ASCII download (Hgx7 & Hgx8)

2) Compression of repetitive characters (Hgx7 & Hgx8)

3) 7 bit encoding for ASCII download (Hgx7)

HQX Format Description (This is not intended to be a programmer's reference).
The format is processed at three different levels:

1) 8 bit encoding of the file:

Byte: Length of FileName (1->63)
Bytes: FileName ("Length" bytes)

Byte: Version

Long: Type

Long: Creator

Word: Flags (And $F800)

Long: Length of Data Fork

Long: Length of Resource Fork

Word: CRC

Bytes: Data Fork ("Data Length" bytes)
Word: CRC

Bytes: Resource Fork ("Rsrc Length" bytes)
Word: CRC

2) Compression of repetitive characters.

($90 is the marker, encoding is made for 3->255 characters)

00 11 22 33 44 55 66 77 -> 00 11 22 33 44 55 66 77
11 22 22 22 22 22 22 33 -> 11 22 90 06 33
11 22 90 33 44 -> 11 22 90 00 33 44

3) 7 bit encoding (Hgx7 only).

The whole file is considered as a stream of bits. This stream will
be divided in blocks of 6 bits and then converted to one of 64
characters contained in a table. The characters in this table have
been chosen for maximum noise protection.

The format will start with a ":" (first character on a line) and

end with a ":". There will be a maximum of 64 characters on a line.
It can be preceeded by comments for novice users.

Table:
1"#$%&"' ()*+,-012345689@ABCDEFGHIJKLMNPQRSTUVXYZ[~abcdefhijklmpgr

Comment :
(This file must be converted with BinHex 4.0)

Yves Lempereur [YVES]

Untitled

GIF (tm)
Graphics Interchange Format (tm)
A standard defining a mechanism
for the storage and transmission
of raster-based graphics information
June 15, 1987
(c) CompuServe Incorporated, 1987
All rights reserved
While this document is copyrighted, the information
contained within is made available for use in computer
software without royalties, or licensing restrictions.
GIF and 'Graphics Interchange Format' are trademarks of
CompuServe, Incorporated.
an H&R Block Company
5000 Arlington Centre Blvd.
Columbus, Ohio 43220
(614) 457-8600
Page 2
Graphics Interchange Format (GIF) Specification

Table of Contents

INTRODUCTION < « « <« « « <« <« <« < . . page 3
GENERAL FILE FORMAT page 3
GIF SIGNATURE « « « « « . . . page 4
SCREEN DESCRIPTOR +« « « « « page 4
GLOBAL COLOR MAP page 5
IMAGE DESCRIPTOR « « « « « « page 6
LOCAL COLOR MAP +« « « « « « . . . page 7
RASTER DATA « « « ¢« « « « « « « <« . . page 7
GIF TERMINATOR « « « « « « « page 8
GIF EXTENSION BLOCKS page 8
APPENDIX A - GLOSSARY page 9
APPENDIX B - INTERACTIVE SEQUENCES page 10

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt

2/18/05 4:17 PM

Page 1 of 16

Untitled 2/18/05 4:17 PM

APPENDIX C - IMAGE PACKAGING & COMPRESSION . . page 12
APPENDIX D - MULTIPLE IMAGE PROCESSING page 15
Graphics Interchange Format (GIF) Page 3
Specification

INTRODUCTION

'GIF' (tm) is CompuServe's standard for defining generalized color
raster images. This 'Graphics Interchange Format' (tm) allows
high-quality, high-resolution graphics to be displayed on a variety of
graphics hardware and is intended as an exchange and display mechanism
for graphics images. The image format described in this document is
designed to support current and future image technology and will in
addition serve as a basis for future CompuServe graphics products.

The main focus of this document is to provide the technical
information necessary for a programmer to implement GIF encoders and
decoders. As such, some assumptions are made as to terminology relavent
to graphics and programming in general.

The first section of this document describes the GIF data format
and its components and applies to all GIF decoders, either as standalone
programs or as part of a communications package. Appendix B 1is a
section relavent to decoders that are part of a communications software
package and describes the protocol requirements for entering and exiting
GIF mode, and responding to host interrogations. A glossary in Appendix
A defines some of the terminology used in this document. Appendix C
gives a detailed explanation of how the graphics image itself is
packaged as a series of data bytes.

Graphics Interchange Format Data Definition

GENERAL FILE FORMAT

| | Screen Descriptor | |

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt Page 2 of 16

Untitled 2/18/05 4:17 PM

I et o
| Ao 0
| | Local Color Map | | |- Repeated 1 to n times
| Ammmmmmmmmmme oo 0
| e 1

Fo— +
Graphics Interchange Format (GIF) Page 4
Specification

GIF SIGNATURE

The following GIF Signature identifies the data following as a
valid GIF image stream. It consists of the following six characters:

GIFS8T7a

The last three characters '87a' may be viewed as a version number
for this particular GIF definition and will be used in general as a
reference 1in documents regarding GIF that address any version
dependencies.

SCREEN DESCRIPTOR

The Screen Descriptor describes the overall parameters for all GIF
images following. It defines the overall dimensions of the image space
or logical screen required, the existance of color mapping information,
background screen color, and color depth information. This information

is stored in a series of 8-bit bytes as described below.

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt Page 3 of 16

Untitled 2/18/05 4:17 PM
bits

76543210 Byte #

Fom +

I

+-Screen Width -+ Raster width in pixels (LSB first)

(I

Fom +

I 1 3

+-Screen Height-+ Raster height in pixels (LSB first)

[4

F=t—————t—t—————1 M =1, Global color map follows Descriptor
IM| cr |O|pixel| 5 cr+l = # bits of color resolution

Fofmm e ————+ pixel+l = # bits/pixel in image

| background | 6 background=Color index of screen background
Fomm + (color i1s defined from the Global color

/00 0O0OO0O0O0O0] 7 map or default map if none specified)
o +

The logical screen width and height can both be larger than the
physical display. How images larger than the physical display are
handled is implementation dependent and can take advantage of hardware
characteristics (e.g. Macintosh scrolling windows). Otherwise images
can be clipped to the edges of the display.

The value of 'pixel' also defines the maximum number of colors
within an image. The range of values for 'pixel' is 0 to 7 which

represents 1 to 8 bits. This translates to a range of 2 (B & W) to 256

colors. Bit 3 of word 5 is reserved for future definition and must be
zZero.

Graphics Interchange Format (GIF) Page 5

Specification

GLOBAL COLOR MAP
The Global Color Map is optional but recommended for images where
accurate color rendition is desired. The existence of this color map is

indicated in the 'M' field of byte 5 of the Screen Descriptor. A color

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt Page 4 of 16

Untitled 2/18/05 4:17 PM
map can also Dbe associated with each image in a GIF file as described
later. However this global map will normally be wused because of
hardware restrictions in equipment available today. In the individual
Image Descriptors the 'M' flag will normally be zero. If the Global
Color Map 1is present, 1it's definition immediately follows the Screen
Descriptor. The number of color map entries following a Screen
Descriptor 1is equal to 2** (# bits per pixel), where each entry consists
of three byte values representing the relative intensities of red, green
and blue respectively. The structure of the Color Map block is:

bits

76543210 Byte #

| red intensity | 1 Red value for color index 0

|green intensity| 2 Green value for color index 0

| blue intensity| 3 Blue value for color index O

| red intensity | 4 Red value for color index 1

|green intensity| 5 Green value for color index 1

| blue intensity| 6 Blue value for color index 1

(Continues for remaining colors)
Each image pixel value received will be displayed according to its
closest match with an available color of the display based on this color
map. The color components represent a fractional intensity value from
none (0) to full (255). White would be represented as (255,255,255),
black as (0,0,0) and medium yellow as (180,180,0). For display, if the
device supports fewer than 8 bits per color component, the higher order
bits of each component are used. In the creation of a GIF color map

entry with hardware supporting fewer than 8 bits per component, the

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt Page 5 of 16

Untitled

component values for the hardware should be converted to the 8-bit
format with the following calculation:

<map_value> = <component value>*255/(2**<nbits> -1)

This assures accurate translation of colors for all displays. In
the cases o0of creating GIF images from hardware without color palette
capability, a fixed palette should be created based on the available
display colors for that hardware. If no Global Color Map is indicated,
a default color map is generated internally which maps each possible
incoming color index to the same hardware color index modulo <n> where
<n> is the number of available hardware colors.

Graphics Interchange Format (GIF) Page 6

Specification

IMAGE DESCRIPTOR

The Image Descriptor defines the actual placement and extents of
the following image within the space defined in the Screen Descriptor.
Also defined are flags to indicate the presence of a local color lookup
map, and to define the pixel display sequence. Each Image Descriptor is
introduced by an image separator character. The role of the Image
Separator 1is simply to provide a synchronization character to introduce
an Image Descriptor. This is desirable if a GIF file happens to contain
more than one image. This character is defined as 0x2C hex or ','
(comma) . When this character is encountered between images, the Image
Descriptor will follow immediately.

Any characters encountered between the end of a previous image and
the image separator character are to be ignored. This allows future GIF
enhancements to be present in newer image formats and yet ignored safely
by older software decoders.

bits

76543210 Byte #

/001 01100 1 '," - Image separator character

| | 2 Start of image in pixels from the

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt

2/18/05 4:17 PM

Page 6 of 16

Untitled

+- Image Left -+ left side of the screen (LSB first)

+- Image Top -+ Start of image in pixels from the

| | 5 top of the screen (LSB first)

+- Image Width -+ Width of the image in pixels (LSB first)

+- Image Height-+ Height of the image in pixels (LSB first)
1 9
+-+-+-+-+-+-----+ M=0 - Use global color map, ignore 'pixel'
IMII|0]0|0|pixel| 10 M=1 - Local color map follows, use 'pixel'
+-+-t+-+-+-+-----+ I=0 - Image formatted in Sequential order
I=1 - Image formatted in Interlaced order
pixel+l - # bits per pixel for this image
The specifications for the image position and size must be confined
to the dimensions defined by the Screen Descriptor. On the other hand
it is not necessary that the image fill the entire screen defined.
LOCAL COLOR MAP
Graphics Interchange Format (GIF) Page 7
Specification
A Local Color Map is optional and defined here for future use. If
the 'M' bit of byte 10 of the Image Descriptor is set, then a color map
follows the Image Descriptor that applies only to the following image.
At the end of the image, the color map will revert to that defined after
the Screen Descriptor. Note that the 'pixel' field of byte 10 of the
Image Descriptor is used only if a Local Color Map is indicated. This
defines the parameters not only for the image pixel size, but determines

the number of color map entries that follow. The bits per pixel value

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt

2/18/05 4:17 PM

Page 7 of 16

Untitled

will also revert to the value specified in the Screen Descriptor when

processing of the image is complete.

RASTER DATA

The format of the actual image is defined as the series of pixel

color 1index wvalues that make up the image. The pixels are stored left
to right sequentially for an image row. By default each image row 1is
written sequentially, top to bottom. In the case that the Interlace or
'T' bit is set in byte 10 of the Image Descriptor then the row order of
the image display follows a four-pass process in which the image is
filled in by widely spaced rows. The first pass writes every 8th row,
starting with the top row of the image window. The second pass writes
every 8th row starting at the fifth row from the top. The third pass
writes every 4th row starting at the third row from the top. The fourth
pass completes the image, writing every other row, starting at the
second row from the top. A graphic description of this process follows:
Image

Row Pass 1 Pass 2 Pass 3 Pass 4 Result

O *x]g*r*x **xTg*r*x
1 **4a*~k **4a**
2 *k3Igrk *k3Igrk
3 * X Ap** * X Ap**
4 **Za** **Za**
5 *kAo** *kfo*x*
6 **Bb** **Bb**
7 **4d** **4d**
8 **]1pb** *k I p*r*
9 **kha*x*x **xhe**x
10 **3C** **3C**
11 *kAfxK xRk fxK
12 **Zb** **Zb**

The image pixel

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt

values are processed as a series of color

indices

2/18/05 4:17 PM

Page 8 of 16

Untitled

which map into the existing color map. The resulting color value from
the map is what is actually displayed. This series of pixel indices,
the number of which is equal to image-width*image-height pixels, are
passed to the GIF image data stream one value per pixel, compressed and
packaged according to a version of the LZW compression algorithm as

defined in Appendix C.

Graphics Interchange Format (GIF) Page 8

Specification

GIF TERMINATOR

In order to provide a synchronization for the termination of a GIF

image file, a GIF decoder will process the end of GIF mode when the
character 0x3B hex or ';' is found after an image has been processed.
By convention the decoding software will pause and wait for an action
indicating that the user is ready to continue. This may be a carriage
return entered at the keyboard or a mouse click. For interactive
applications this user action must be passed on to the host as a
carriage return character so that the host application can continue.
The decoding software will then typically leave graphics mode and resume

any previous process.

GIF EXTENSION BLOCKS

To provide for orderly extension of the GIF definition, a mechanism

for defining the packaging of extensions within a GIF data stream is
necessary. Specific GIF extensions are to be defined and documented by

CompuServe in order to provide a controlled enhancement path.

GIF Extension Blocks are packaged in a manner similar to that wused

http:

by the raster data though not compressed. The basic structure is:

76543210 Byte #

_______________ +
00100001 1 '!''" - GIF Extension Block Introducer
_______________ +

function code | 2 Extension function code (0 to 255)
——————————————— + -——+

byte count | |

//www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt

2/18/05 4:17 PM

Page 9 of 16

Untitled 2/18/05 4:17 PM

+-- Repeated as many times as necessary

| func data bytes]|

|00 0O0OO0O0O0 0] zero byte count (terminates block)

A GIF Extension Block may immediately preceed any Image Descriptor
or occur before the GIF Terminator.

All GIF decoders must be able to recognize the existence of GIF
Extension Blocks and read past them if unable to process the function
code. This ensures that older decoders will be able to process extended
GIF image files 1in the future, though without the additional
functionality.

Graphics Interchange Format (GIF) Page 9

Appendix A - Glossary

GLOSSARY

Pixel - The smallest picture element of a graphics image. This usually
corresponds to a single dot on a graphics screen. Image resolution is
typically given in units of pixels. For example a fairly standard
graphics screen format 1s one 320 pixels across and 200 pixels high.
Each pixel can appear as one of several colors depending on the
capabilities of the graphics hardware.

Raster - A horizontal row of pixels representing one line of an 1image. A
typical method of working with images since most hardware is oriented to
work most efficiently in this manner.

LSB - Least Significant Byte. Refers to a convention for two byte numeric
values in which the less significant byte of the value preceeds the more
significant byte. This convention is typical on many microcomputers.

Color Map - The list of definitions of each color wused 1in a GIF image.

These desired colors are converted to available colors through a table

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt Page 10 of 16

Untitled 2/18/05 4:17 PM
which is derived by assigning an incoming color index (from the image)
to an output color index (of the hardware). While the color map
definitons are specified in a GIF image, the output pixel colors will
vary based on the hardware used and its ability to match the defined
color.

Interlace - The method of displaying a GIF image in which multiple passes
are made, outputting raster lines spaced apart to provide a way of
visualizing the general content of an entire image before all of the
data has been processed.

B Protocol - A CompuServe-developed error-correcting file transfer protocol
available 1in the public domain and implemented in CompuServe VIDTEX
products. This error checking mechanism will be used in transfers of
GIF images for interactive applications.

LZW - A sophisticated data compression algorithm based on work done by
Lempel-Ziv & Welch which has the feature of very efficient one-pass
encoding and decoding. This allows the image to be decompressed and
displayed at the same time. The original article from which this
technique was adapted is:

Terry A. Welch, "A Technique for High Performance Data
Compression", IEEE Computer, vol 17 no 6 (June 1984)

This basic algorithm is also used in the public domain ARC file
compression utilities. The CompuServe adaptation of LZW for GIF is
described in Appendix C.

Graphics Interchange Format (GIF) Page 10

Appendix B - Interactive Sequences

GIF Sequence Exchanges for an Interactive Environment

The following sequences are defined for use 1in mediating control
between a GIF sender and GIF receiver over an interactive communications
line. These sequences do not apply to applications that involve
downloading of static GIF files and are not considered part of a GIF
file.

GIF CAPABILITIES ENQUIRY

The GCE sequence is issued from a host and requests an interactive

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt Page 11 of 16

Untitled
GIF decoder to return a response message that defines the graphics
parameters for the decoder. This involves returning information about
available screen sizes, number of bits/color supported and the amount of
color detail supported. The escape sequence for the GCE is defined as:
ESC [> 0 g (g is lower case, spaces inserted for clarity)
(0x1B 0x5B Ox3E 0x30 0x67)
GIF CAPABILITIES RESPONSE
The GIF Capabilities Response message is returned by an interactive
GIF decoder and defines the decoder's display capabilities for all
graphics modes that are supported by the software. Note that this can
also include graphics printers as well as a monitor screen. The general
format of this message is:
#version;protocol{;dev, width, height, color-bits, color-res}... <CR>
'#' - GCR identifier character (Number Sign)
version - GIF format version number; initially '87a’
protocol='0"'" - No end-to-end protocol supported by decoder
Transfer as direct 8-bit data stream.
protocol='1l"' - Can use an error correction protocol to transfer GIF data
interactively from the host directly to the display.
dev = '0' - Screen parameter set follows
dev = 'l' - Printer parameter set follows
width - Maximum supported display width in pixels
height - Maximum supported display height in pixels
color-bits - Number of Dbits per pixel supported. The number of
supported colors is therefore 2**color-bits.
color-res - Number of bits per color component supported in the
hardware color palette. If color-res is '0O' then no
hardware palette table is available.
Note that all values in the GCR are returned as ASCII decimal
numbers and the message is terminated by a Carriage Return character.
Graphics Interchange Format (GIF) Page 11
Appendix B - Interactive Sequences

The following GCR message describes three standard EGA

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt

2/18/05 4:17 PM

Page 12 of 16

Untitled
configurations with no printer; the GIF data stream can be processed
within an error correcting protocol:
#87a;1 ;0,320,200,4,0 ;0,640,200,2,2 ;0,640,350,4,2<CR>
ENTER GIF GRAPHICS MODE
Two sequences are currently defined to invoke an interactive GIF
decoder into action. The only difference between them is that different
output media are selected. These sequences are:
ESC [> 1 g Display GIF image on screen
(0x1B 0x5B 0x3E 0x31 0x67)
ESC [> 2 g Display image directly to an attached graphics printer.

The image may optionally be displayed on the screen as

well.
(0x1B 0x5B 0x3E 0x32 0x67)
Note that the 'g' character terminating each sequence is in lower
case.
INTERACTIVE ENVIRONMENT
The assumed environment for the transmission of GIF image data from
an interactive application is a full 8-bit data stream from host to
micro. All 256 character codes must be transferrable. The establishing
of an 8-bit data path for communications will normally be taken care of
by the host application programs. It is however up to the receiving
communications programs supporting GIF to be able to receive and pass on
all 256 8-bit codes to the GIF decoder software.
Graphics Interchange Format (GIF) Page 12
Appendix C - Image Packaging & Compression
The Raster Data stream that represents the actual output image can
be represented as:

76543210

| code size |

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt

2/18/05 4:17 PM

Page 13 of 16

Untitled 2/18/05 4:17 PM
+-- Repeated as many times as necessary

| data bytes | |

[0 0 0O0OO0O0O0 0] zero byte count (terminates data stream)

The conversion of the image from a series of pixel values to a
transmitted or stored character stream involves several steps. In brief
these steps are:

1. Establish the Code Size - Define the number of bits needed to
represent the actual data.

2. Compress the Data - Compress the series of image pixels to a series
of compression codes.

3. Build a Series of Bytes - Take the set of compression codes and
convert to a string of 8-bit bytes.

4. Package the Bytes - Package sets of bytes into blocks preceeded by
character counts and output.

ESTABLISH CODE SIZE

The first byte of the GIF Raster Data stream is a value indicating
the minimum number of bits required to represent the set of actual pixel
values. Normally this will be the same as the number of color bits.
Because of some algorithmic constraints however, black & white images
which have one color bit must be indicated as having a code size of 2.
This code size value also implies that the compression codes must start
out one bit longer.

COMPRESSION

The LZW algorithm converts a series of data values into a series of
codes which may be raw values or a code designating a series of values.
Using text characters as an analogy, the output code consists of a
character or a code representing a string of characters.

Graphics Interchange Format (GIF) Page 13

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt Page 14 of 16

Untitled 2/18/05 4:17 PM
Appendix C - Image Packaging & Compression
The LZW algorithm used in GIF matches algorithmically with the

standard LZW algorithm with the following differences:

1. A special Clear code is defined which resets all
compression/decompression parameters and tables to a start-up state.
The value of this code is 2**<code size>. For example if the code
size indicated was 4 (image was 4 bits/pixel) the Clear code value
would be 16 (10000 binary). The Clear code can appear at any point
in the image data stream and therefore requires the LZW algorithm to
process succeeding codes as if a new data stream was starting.
Encoders should output a Clear code as the first code of each image
data stream.

2. An End of Information code is defined that explicitly indicates the
end of the image data stream. LZW processing terminates when this
code is encountered. It must be the last code output by the encoder
for an image. The value of this code is <Clear code>+1.

3. The first available compression code value is <Clear code>+2.

4. The output codes are of variable length, starting at <code size>+1
bits per code, up to 12 bits per code. This defines a maximum code
value of 4095 (hex FFF). Whenever the LZW code value would exceed
the current code length, the code length is increased by one. The
packing/unpacking of these codes must then be altered to reflect the
new code length.

BUILD 8-BIT BYTES

Because the LZW compression used for GIF creates a series of
variable 1length codes, of between 3 and 12 bits each, these codes must
be reformed into a series of 8-bit bytes that will be the characters
actually stored or transmitted. This provides additional compression of
the image. The codes are formed into a stream of bits as if they were
packed right to left and then picked off 8 bits at a time to be output.

Assuming a character array of 8 bits per character and using 5 bit codes

to be packed, an example layout would be similar to:

byte n byte 5 byte 4 byte 3 Dbyte 2 byte 1

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt Page 15 of 16

Untitled 2/18/05 4:17 PM

| and so on |hhhhhggg|ggfffffe|eeecedddd]|dcccccbb|bbbaaaaal

Note that the physical packing arrangement will change as the
number of bits per compression code change but the concept remains the
same.
PACKAGE THE BYTES
Once the bytes have been created, they are grouped into blocks for
output by preceeding each block of 0 to 255 bytes with a character count
byte. A block with a zero byte count terminates the Raster Data stream
for a given 1image. These blocks are what are actually output for the
Graphics Interchange Format (GIF) Page 14
Appendix C - Image Packaging & Compression
GIF image. This block format has the side effect of allowing a decoding
program the ability to read past the actual image data if necessary by
reading block counts and then skipping over the data.
Graphics Interchange Format (GIF) Page 15
Appendix D - Multiple Image Processing
Since a GIF data stream can contain multiple images, it is
necessary to describe ©processing and display of such a file. Because
the image descriptor allows for placement of the image within the
logical screen, it is possible to define a sequence of images that may
each be a partial screen, but in total fill the entire screen. The
guidelines for handling the multiple image situation are:
1. There is no pause between images. Each is processed immediately as
seen by the decoder.
2. Each image explicitly overwrites any image already on the screen
inside of its window. The only screen clears are at the beginning
and end of the GIF 1image process. See discussion on the GIF

terminator.

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt Page 16 of 16

