Energies in Electron Volts

Room temperature thermal energy of a molecule	eV
Visible light photons	eV
Energy for the dissociation of an NaCl molecule into Na+ and Cl ions:4.2	eV
Ionization energy of atomic hydrogen	eV
Approximate energy of an electron striking a color television screen20,000	eV
High energy diagnostic medical x-ray photons	eV (=0.2 MeV)
Typical energies from nuclear decay:	
(1) gamma0-3	MeV
(2) beta0-3	MeV
(3) alpha2-10	MeV
Cosmic ray energies1	MeV - 1000 TeV

Electron Volt 1234 RULE eV = electron across 1volt Photon_ev = 1234_eV/wavelength_nm

The ElectronVolt (eV) and the Rule of 1234

The kinetic energy of an electron accelerated across a potential difference of one volt is one electronvolt (eV).

The eV is not a unit of charge, or a unit of voltage; it is a unit of energy. The energy E in electronvolts (eV) of a photon is related to its wavelength l in nanometers (nm) through the following relationship:

E = (1234 eV-nm) / 1

This equation is important not because of any essential physics underlying it, but because is is a time-saver.