
24

Interpolation

A problem that often arises in data analysis is interpolation, that is, estimating
the value of a function between points at which the function is known. This
chapter presents several simple interpolation examples using the built-in IDL
interpolation functions.

24.1 IDL Commands and Keywords

The following built-in IDL functions can be used to interpolate data:

■ INTERPOL function

■ BILINEAR function

■ INTERPOLATE function

■ TRIANGULATE function

■ TRIGRID function

24.2 Background

Given a function that is tabulated at a finite set of points, interpolation is
the problem of estimating the value of the function at locations between the
tabulated points. Extrapolation is the problem of estimating the value of the
function outside the range of tabulated points. To interpolate or extrapo-
late, the tabulated values are used to construct an interpolating function. The
interpolating function is often a piecewise polynomial of relatively low order,
typically linear, quadratic, or cubic, although other kinds of functions can be
used. In order to be considered interpolation, as opposed to curve fitting, the
interpolating function should pass exactly through the tabulated points.

IDL includes several built-in functions to do interpolation using various
kinds of interpolating functions. These include INTERPOL and INTERPOLATE.

24.3 1-D Interpolation

The IDL function INTERPOL can do several different kinds of one-dimensional
interpolation, specifically linear, quadratic, and cubic spline interpolation.

237

238 Interpolation

Here is a quick demonstration of how to use INTERPOL. Annotated versions
of the resulting graphs are plotted in Figure 24.1.

IDL> x = findgen(6)

IDL> y = [0.1, 0.9, 0.2, 0.8, 0.3, 0.7]

IDL> xx = 5.0*findgen(26)/25

IDL> yy = interpol(y, x, xx)

IDL> plot, x, y, psym = −4, symsize = 2

IDL> oplot, xx, yy, psym = −1

Linear Interpolation

Spline Interpolation

x

x x

y y

y

Quadratic Interpolation
1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

FIGURE 24.1 Examples of 1-D interpolation using linear interpolation (top left), quadratic
interpolation (top right), and spline interpolation (bottom left). (INTERPOLATE1)

24.4 Bilinear Interpolation 239

This example starts by creating a regularly spaced, independent coordinate x

and an oscillatory set of dependent values y. The coordinates of the tabulated
points do not have to be regularly spaced, but they must be monotonic (that
is, in either increasing or decreasing order of x). The variable xx contains the
coordinates of the points that we want to interpolate to. These points do not
need to be monotonic. The interpolated values (yy) are computed using the
INTERPOL function. By default, INTERPOL uses linear interpolation. Finally,
the original points (x, y) are plotted and the interpolated points (xx, yy)
are overplotted. The resulting graph is the upper left panel of Figure 24.1.
The original data points are indicated by diamonds, the interpolated val-
ues by pluses. As expected for a piecewise linear interpolating function, the
interpolated values lie on straight lines connecting the tabulated points.

To use a quadratic interpolating function, add the QUADRATIC keyword:

IDL> yy = interpol(y, x, xx, /quadratic)

IDL> plot, x, y, psym = −4, symsize = 2

IDL> oplot, xx, yy, psym = −1

The result is plotted in the upper right panel of Figure 24.1. Because quadratic
interpolation requires three data points to construct the pieces of the inter-
polating function, there are two possible choices for the points to be used to
interpolate each segment. Either choice will be asymmetric. In part due to this
asymmetry, interpolating functions of odd order are usually preferred (linear,
cubic, etc.). In this case, you can see that although the interpolating function
passes through the tabulated points, it has kinks at the tabulated points and
looks obviously different on either side of those points.

Splines are interpolating functions that are specifically designed to be
smooth. Setting the SPLINE keyword tells INTERPOL to use cubic splines,
which ensures that the interpolating function and its first and second deriva-
tives are continuous everywhere, including the tabulated points.

IDL> yy = interpol(y, x, xx, /spline)

IDL> plot, x, y, psym = −4, symsize = 2

IDL> oplot, xx, yy, psym = −1

The resulting interpolated points are shown in the lower left panel of
Figure 24.1. Note that the extrema of the interpolated values do not coincide
with the tabulated points.

As you can see, interpolation schemes of different order have different char-
acteristics that need to be taken into account when selecting an interpolation
method. Higher order does not necessarily mean better!

24.4 Bilinear Interpolation

IDL includes two primary functions for doing two-dimensional interpolation.
The simpler of the two is BILINEAR, which, as the name suggests, performs

Chapter 24

240 Interpolation

bilinear interpolation. Bilinear interpolation is often used to interpolate two-
dimensional gridded data between similar data grids (from the corners of a
rectangular grid to the centers of the grid boxes, for example) or when a fast,
simple interpolation scheme is sufficient.

The concept of bilinear interpolation is illustrated in Figure 24.2. Tabu-
lated values of a function z are assumed to be available on a two-dimensional
grid, indicated by black dots. The grid does not need to be regular (evenly
spaced), but the grid lines do need to be perpendicular; that is, the
x-coordinates of the grid points depend only on i, and the y-coordinates
depend only on j.

The desired quantity is the value ẑ at the point (x̂, ŷ), which is indi-
cated by the red circle. Applying the ideas of linear interpolation to this
two-dimensional problem suggests two possible approaches. One is to inter-
polate first in the x-direction to get values at the locations marked by the
filled red squares. Then interpolate in the y-direction to get ẑ. The second
approach would be to interpolate first in the y-direction to get values at
the locations marked by the open red squares. Then interpolate in the
x-direction to get ẑ. This ambiguity suggests that one might get differ-
ent answers depending on the order in which the calculation is done. In
fact, comparing the two approaches reveals that, due to the linearity of
the method, the two approaches give the same answer. (The algorithm is

0
0

2

3

2

1

1

x

y

x

ŷ

^

FIGURE 24.2 Schematic illustrating the concept of bilinear interpolation. Also see the
color version of this figure in the color plates. (Not IDL)

24.4 Bilinear Interpolation 241

usually implemented by computing weights w so that, when x̂ lies between
xi and xi+1 and ŷ lies between yj and yj+1, the result can be written
ẑ = wi,j zi,j + wi+1,j zi+1,j + wi,j+1 zi,j+1 + wi+1,j+1 zi+1,j+1. The weights
depend on x̂ and ŷ.)

BILINEAR requires only three arguments and has no keywords. The user
need only supply the 2-D array of tabulated data and the coordinates of the
output grid (x̂ ’s and ŷ’s). Here is a simple example that interpolates coarsely
gridded values of the function z(x, y) = sin(πx) sin(πy) to a finer grid. The
original coordinates x and y both range from 0 to 1.

IDL> WINDOW, XSIZE = 600, YSIZE = 600

IDL> !P.MULTI = [0, 2, 2]

IDL> x_lo = FINDGEN(5)/4

IDL> y_lo = FINDGEN(5)/4

IDL> z_lo = SIN(!PI*x_lo) # SIN(!PI*y_lo)

IDL> SURFACE, z_lo, x_lo, y_lo

The resulting surface plot is shown in the upper left panel of Figure 24.3. For
comparison, a higher-resolution version of data is plotted in the upper right
panel of Figure 24.3.

IDL> x_hi = FINDGEN(17)/16

IDL> y_hi = FINDGEN(17)/16

IDL> z_hi = SIN(!PI*x_hi) # SIN(!PI*y_hi)

IDL> SURFACE, z_hi, x_hi, y_hi

The higher-resolution grid gives a much smoother picture of the underlying
function. Finally, the low-resolution data are interpolated to the high-
resolution grid by using BILINEAR. The coordinates used by BILINEAR are
grid coordinates, which are based on the indices of the grid points. In this
example, the grid coordinates range from 0 to 4 in both directions. Unlike
grid indices, which are integers, the grid coordinates are floating-point values.
In Figure 24.2, x̂ ≈ 1.25, while ŷ ≈ 2.5. The user must provide the grid
coordinates to BILINEAR. BILINEAR computes the interpolated values, which
are returned as a 2-D array.

IDL> z_int = BILINEAR(z_lo, 4*x_hi, 4*y_hi)

IDL> SURFACE, z_int, x_hi, y_hi

The result is shown in the lower left panel of Figure 24.3. As can be seen
in the figure, there is a noticeable difference between the interpolated values
and the high-resolution values. Because the sine function is a complex curve,
the bilinear interpolating function cannot fully capture its curvature. As a
result, the interpolated values have “facets” between the tabulated data points.
This is a reminder that interpolation does not magically fill in between known
data points; it only provides an estimate of the unknown values.

Chapter 24

242 Interpolation

Low-Resolution Data1.0

0.8

0.6

0.4

0.2

−0.0
1.0

0.8
0.6

0.4
0.2

0.0 0.0 0.2 0.4 0.6 0.8 1.0

Interpolated Data (Bilinear)1.0

0.8

0.6

0.4

0.2

−0.0
1.0

0.8
0.6

0.4
0.2

0.0 0.0 0.2 0.4 0.6 0.8 1.0

High-Resolution Data1.0

0.8

0.6

0.4

0.2

−0.0
1.0

0.8
0.6

0.4
0.2

0.0 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 24.3 Examples of bilinear (2-D) interpolation. Original low-resolution function
(top left), high-resolution version of original function (top right), original function interpolated
to high-resolution grid (bottom left). (BILINEAR1)

24.5 Higher Dimensions

The IDL function INTERPOLATE will do one-, two-, and three-dimensional
linear interpolation. It will also do cubic convolution on two-dimensional
arrays. If you need to interpolate data with more than three dimensions, you
may be able to use the built-in IDL functions on one or two dimensions at
a time, or you may be forced to develop your own interpolation procedure.
There are a great many different interpolation schemes that are not included
in the IDL built-in functions. Before writing your own procedure, be sure to
search the publicly available IDL libraries. Someone may have already done
the work for you!

24.6 Irregular Grids 243

24.6 Irregular Grids

IDL has several built-in tools for dealing with irregularly gridded data. Data
can be considered to be irregularly gridded if they do not fit naturally into
standard rectangular data arrays. An example of irregularly gridded data
would be temperatures at major cities. The locations of cities do not fall
onto a rectangular grid.

One useful approach to analyzing and displaying irregularly gridded data
is triangulation. When a data set is triangulated, a network or mesh of triangles
is constructed with the data points at the vertices of the triangles. The mesh
of triangles defines a piecewise-planar interpolating function; that is, each
triangle is a piece of a plane surface. Note that the mathematical form of the
triangular surfaces (flat planes) is different from the bilinear functions used
for interpolating rectangularly gridded data.1

Given the x and y coordinates of a set of irregularly distributed data
points, the IDL procedure TRIANGULATE will construct a triangular mesh
from those points (known as a Delaunay triangulation) and return a list
of the indices of the vertices of each triangle. Constructing the triangular
mesh requires only a single IDL command, but plotting the results is slightly
more complicated than some other types of plots. Therefore, this process is
demonstrated using the IDL script below. (The script is available in the file
triangulate_script.pro in the script’s directory.) The graphs produced by
the script are shown in Figure 24.4.

Irregular Grid, Triangulation, and Contours Regular Grid, and Contours
1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

y y

x x

FIGURE 24.4 Examples of a 2-D triangular mesh created from irregularly gridded data by
TRIANGULATE (left panel) and the data interpolated to a regular rectangular grid (right panel).
Also see the color version of this figure in the color plates section. (TRIANGULATE_PS)

1 A rectangular grid could be converted to a triangular grid by drawing a diagonal through
each rectangle of the grid. The triangles could then be used to construct an interpolating
function for the data. Depending on which diagonal is chosen, however, the resulting
triangles are generally different, which introduces ambiguity into the problem.

Chapter 24

244 Interpolation

WINDOW, XSIZE = 800, YSIZE = 400 ;Open graphics window

!P.MULTI = [0, 2, 1] ;Two graphics panes

; PART 1 − Create irregular grid and display triangulation

n = 50 ;Number of random points

seed = 47 ;Make result reproducible

x = RANDOMU(seed, n) ;x−coords of irregular grid

y = RANDOMU(seed, n) ;y−coords of irregular grid

z = SIN(!PI*x)*SIN(!PI*y) ;Compute dependent variable

TRIANGULATE, x, y, tri ;Compute triangulation

ntri = (SIZE(tri))[2] ;Number of triangles

PLOT, x, y, PSYM = 3, $;Plot data points

TITLE = 'Irregular Grid and Triangulation', $

XTITLE = 'x', $

YTITLE = 'y'

FOR i = 0, ntri−1 DO $;Draw each triangle

PLOTS, [x[tri[*,i]], x[tri[0,i]]], $

[y[tri[*,i]], y[tri[0,i]]]

CONTOUR, z, x, y, TRIANGULATION = tri, $;Draw contours using triangles

/OVERPLOT, /FOLLOW, $

LEVELS = 0.1*FINDGEN(11), $

COLOR = COLOR_24('red')

; PART 2 − Interpolate data to a regular grid and plot using CONTOUR

nx = 25 ;x−resolution of regular grid

ny = 25 ;y−resolution of regular grid

zz = TRIGRID(x, y, z, tri, $;Interpolate to regular grid

NX = nx, NY = ny, $;Resolution of output grid

XGRID = xx, YGRID = yy, $;Coordinates of output grid

MISSING = !VALUES.F_NAN) ;Points outside triangles are

set to NaN

CONTOUR, zz, xx, yy, /FOLLOW, $;Contour data on regular grid

C_COLOR = COLOR_24('blue'), $

LEVELS = 0.1*FINDGEN(11), $

TITLE = 'Regular Grid and Contours', $

XTITLE = 'x', $

YTITLE = 'y'

xg = REBIN(xx, nx, ny, /SAMPLE) ;Make xx into 2−D grid

yg = REBIN(TRANSPOSE(yy), nx, ny, /SAMPLE) ;Make yy into 2−D grid

24.6 Irregular Grids 245

i = WHERE(FINITE(zz)) ;Find points within triangulation

PLOTS, xg[i], yg[i], PSYM = 3 ;Plot grid points within

triangulation

!P.MULTI = 0 ;Restore !P.MULTI

The first two lines of the script open a graphics window for two plots.
Next, the script creates an irregular grid of 50 data points by using the

RANDOMU function to generate random x and y coordinates between 0 and 1.
For the dependent variable z we use the same function as in the previous
examples, z(x, y) = sin(πx) sin(πy). The triangular mesh is computed
using the TRIANGULATE procedure. The list of the indices of the vertices
of the triangles is returned in the array tri, which is dimensioned 3×
ntri, where ntri is the number of triangles needed to create the mesh.
We use the SIZE function to get the number of triangles from the dimensions
of tri.

Next, the data points are plotted (do not connect the dots!), and then, for
each triangle, the three sides are drawn using the coordinates of the vertices
of the triangles. Note that some triangles are nearly equilateral, whereas others
are long and thin.

Given the irregularly gridded data and the list of triangles, the CONTOUR

procedure will draw contour lines. These are drawn in red on top of the tri-
angular mesh. Notice that the contours are straight lines within each triangle.
This results from the fact that the contour segments are straight lines defined by
the intersection of each triangle and the surfaces z = {0.0, 0.1, 0.2, . . . , 1.0}.
As you can see, although the function z is symmetric around the center of
the plot box, the contours are not. Also, sizable parts of the box have no data
points at all. This indicates that this set of 50 randomly distributed points is
not sufficient to characterize this function well. Setting the IRREGULAR key-
word to CONTOUR is equivalent to calling TRIANGULATE and then CONTOURwith
the TRIANGULATION keyword.

If the only use of the data is to display contour plots, then the steps above
are sufficient. In some cases, however, it is useful to interpolate the irregularly
gridded data onto a regular grid. This can be done by using the TRIGRID

function, which is demonstrated in the second part of the script.
The properties of the regular output grid can be specified by using various

keywords of the TRIGRID function. Here we specify that the output grid be
dimensioned 25 × 25. By default, the grid is created so that its rectangular
border just includes all of the points of the mesh. The coordinates of the
grid points are returned in the arrays xx and yy. Points that fall outside the
boundary of the triangular mesh are set to NaN. Points inside are interpolated
using the triangular mesh computed earlier by TRIANGULATE. If desired, points
outside the mesh can be estimated by extrapolation, but the results are often
unsatisfactory. The interpolated values on the regular grid are returned in the
array zz.

Chapter 24

246 Interpolation

The regularly gridded interpolated values are plotted in blue using a stan-
dard call to CONTOURwithout the TRIANGULATE keyword. Finally, the locations
of the regular grid points that fall within the triangular mesh (points with val-
ues that are not NaN) are drawn. Because contours are drawn differently on
the irregular and regular grids, the two sets of contours are very similar, but
not identical. You can see this by modifying the script triangulate.pro to
overplot the two sets of contours on the same graph.

24.7 Summary

This chapter covers the basics of interpolation using the INTERPOL and
BILINEAR functions. Displaying irregularly gridded data by using a trian-
gular mesh, and interpolating to a regular grid are demonstrated using the
TRIANGULATE and TRIGRID functions.

