Cubic Spline Interpolation
MAE 5093

Charles O’Neill
28 May 2002

Abstract

A cubic spline routine was developed for unequgligced sequential data points. Cubic spline
theory is reviewed. A Visual Basic computer progiar&xcel was created to fit a spline to input
data points. Three testcases are used to validatetitine. Conclusions regarding the cubic
spline routine are made.

Introduction

The objective is to fit a cubic spline to data pgeirA typical curve fit involves forming one
equation through all n points. In contrast, a spowing each segment to have a unique
equation while still constraining the curve fitttee data properties.

This paper will develop the governing equationsg@ubic spline. A computer implementation
using Visual Basic will be presented. Three tegtsasll validate the spline method and the
computer code. Finally, conclusions will be disass

Theory

Spline theory is simple. Overintervals, the routine fits equations subject to the boundary
conditions ofn+1 data points. The derivations of Lilley[1] and Wtig] are used. The
derivation assumes a functional form for the cuditva his equation form is simplified and then
solved for the curve fit equation.

The assumed form for the cubic polynomial curvéditeach segment is,
y=a(x-x) +b(x-x,) +c(x—x,)+d,
where the spacing between successive data points is
h =X, =%

The cubic spline constrains the function valdiédérivative and ! derivative. The routine must
ensure thag(x), y'(x) andy”(x) are equal at the interior node points for adjasegments.
Substituting a variabl& for the polynomial’s second derivative reducesrtamber of equations
from a, b, ¢, d for each segment to on§for each segment.

For thei™ segment, the S governing equation is,
hi, S+ (2hi—l +2h,)S. +hS,; = G(yiﬂh_ Yi _Yi I:yi—lj
i i-1

In matrix form, the governing equations reduce to-diagonal form.

Ys— Y, _ Y. =W
2(h, +h,) h, S, h, hl
h, 2(h2+h3) S -,
- - . hn—2 - .
hn_2 2(hn_2 + hn—l) Sn—l Yo = Yna _ Y1~ Yn-2
L hn—l hn—2 i

S; and § are zero for theatural spline boundary condition. If different boundaonditions are
needed, the appropriate changes can be made govwkening equations.

Finally, the cubic spline properties are found bgstituting into the following equations. These
a, b, c andd values correspond to the polynomial definitiondach segment.

ai :(S+1_S|)/6hi

b =5 /2
Cc = Yia 7Y _ 2hS +hS,
' h 6

d =y,

Solution Method

A Visual Basic program was written in Excel toditubic spline as described in the Theory
section. The program is listed in the Appendix. §beeral program steps are given below.

1. Problem Initialization The program initializes the variables.
2. Read in Data Values The data values are read and the individual iaterare calculated.

3. Determine S matrices The influence coefficient values for tBanatrix are determined
for a natural spline. The constant matfx,is determined.

4. Matrix Solver A generic Tri-Diagonal-Matrix-Algorithm (TDMA) sekr determines the
Svalue at each interval.

5. Calculate Cubic Parameters The cubic parametegs b, c andd are calculated at each
interval fromSandh.

6. Writeout The program writes out the polynomial specificatiermsa, b, c andd.

Results

The cubic spline curve fit routine was validatedhahree testcases. The first is an equally
spaced polynomial function. Next, an unequally splaexponential function is fit. Finally, the
cubic spline routine is tested omamp function. The results are compared with known gxas
where possible.

Equal Data Spacing

This testcase fits a cubic splineft(x) = x* - aBng the x interval from 0 to 4. This problem is

solved as an example in Lilley’s[1] notes. Theicudpline routine determines the same S values
as the example. Figure 1 shows a plot of the fan&nd the cubic spline.

f(x)=x*-8
¢ Data Points
——— Cubic Spline

—— Analytic

Figure 1. Equal Spacing

The spline was fit to 5 data points. The splineatsiral, S equals zero at the ends. Overall fit is
good except between x values of 3 and 4. Thisrdiffee is caused by timatural spline
boundary conditions at x=0 and 4. Changing thenspth reflect the correct%derivative at x=4
would help the fit. Also, the, b, c andd parameters would exactly recover the polynomial
function.

Unequal Data Spacing

This testcase fits a cubic splineft(x) = 2e* — x> with unequal data spacing. Gerald and
Wheatly[2] solve the problem in Example 3.6. Theicispline routine finds the same S, a, b, ¢
and d parameters as Gerald and Wheatly. Figune®ssa plot of the function and the cubic
spline.

Notice that the spline creates a good fit betweerségments with™ derivatives near zero. The
third segment (x= 1.5 to 2.25) has the worst fitehese of the natural spline boundary condition
at point 4. This is the sam&®2ierivative problem as discussed in the equal sgaeistcase.

f(x) =2e* —x*

¢ Data Points
——— Cubic Spline
—— Analytic

Figure 2. Unequal Spacing

Bump Function

The bump testcase fits a cubid (&) = cos)™ with seven data points. Gerald[2] used this

function to illustrate problems with other interattbn methods. Figure 3 shows the function and
the cubic spline fit.

f (x) = cosf)™
o Data Points
——— Cubic Spline

—— Analytic

Figure 3. Bump Testcase

Visually, the cubic spline dips below into negatixadues between x= -2 to —1 and x= 1 to 2.
The actual function remains positive. It appeass the best fit occurs in the middle. This makes
sense because the end points are less constraitfegldctual function when compared to the
middle points.

Conclusions

A cubic spline curve fit routine was successfuthpiemented. A curve fit program was written
with Visual Basic inside Excel. Three testcasesawesed to validate the curve fit routine.

The results show that the cubic spline provideadequate curve fit for most data sets. Problems
occurred at the end segments because of differdrete®en th@atural spline boundary

condition and the function’s actudl@erivative. Including % derivative information for the
endpoints would doubtlessly improve the curve fit.

Additionally, the spline method also allows for imanic solutions by forcing the same function
properties onto the end points. Variations on iaisnmonic method would be needed for
unknown period oscillations or simultaneous multea data points. Far from the end points,
even the current code would yield good curve bishlarmonic data points.

The cubic spline is an easy to implement curveofitine. Because the method involves
connecting individual segments, the cubic splin@idw oscillation problems in the curve fit.
Overall, the cubic spline provides a good curvédiitarbitrary data points.

References
[1] Lilley, D. G., Numerical Methods, Stillwater, OK, 2002. NOT AVAILABLE

[2] Gerald, C., and Wheatley, Rpplied Numerical Analysis, Addison-Wesley, 1994.

Comments and Thanks (July 2008)
Special thanks to C. Selover and Dr. M. Maixnerfiioding and correcting typos and bugs.

For a forgotten project in a long-ago summer nucatrmethod course, this project has attracted
a surprising number of comments.

Please invest in a good numerical methods book Lilley[1] reference was a series of class
notes which are not currently available. | sug¢jest you either use the Gerald reference or buy
Lilley’s forthcoming book. Hamming’'s Numerical Mettis published by Dover is nice. Another
reasonable reference is the Numerical Recipesssayi®ress, et al.

Visual Basic defines the array S(10) with eleméms O to 10. For S, | was only using
elements 1 to 10, which accounts for the “Shift BMA coordinate system” code (The TDMA
matrix inversion starts at element 0). This indgxmnethod is sub-optimal.

Appendix: Computer Code
Option Explicit

' Cubic Spline

' Project 1 MAE 5093

' 5-28-02

' Copyright (c) 2002 Charles O'Neill

' Permission is hereby granted, free of charge, to
' obtaining a copy of this software and associated
'files (the "Software"), to deal in the Software w

' restriction, including without limitation the rig

' copy, modify, merge, publish, distribute, sublice
' copies of the Software, and to permit persons to
' Software is furnished to do so, subject to the fo
' conditions:

' The above copyright notice and this permission no

"included in all copies or substantial portions of

' THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANT
' EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
' OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURP

any person
documentation
ithout

hts to use,

nse, and/or sell
whom the
llowing

tice shall be
the Software.

Y OF ANY KIND,
THE WARRANTIES
OSE AND

"NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
"HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
"WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWI SE, ARISING
'FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE O R THE USE OR

' OTHER DEALINGS IN THE SOFTWARE.
Sub Main()

'‘Data sizing

Dim x(10) As Double, y(10) As Double, norder As Int
Dim h(10) As Double

Dim i As Integer, j As Integer

'‘Cubic sizing

Dim S(10) As Double

"TDMA sizing (share A,B,C,D with cubic)

Dim B(10) As Double, D(10) As Double, A(10) As Doub
Dim ntdma As Integer

‘Setup Lagrange polynomial ------------------------
'Read in data-point order
norder = ActiveSheet.Cells(3, 3)

'Read in Data Values
Fori=1 To norder
x(i) = ActiveSheet.Cells(4 + i, 3)
y(i) = ActiveSheet.Cells(4 + i, 4)
Next i

'‘Determine the width of the ith interval
Fori=1To (norder - 1)
h(i) = x(i + 1) - x(i)
ActiveSheet.Cells(4 + i, 5) = h(i)
Next i

'Set S matrix influence coefficients for natural sp
Fori=2 To (norder - 1)

=i - 1'Shift to TDMA coordinate system
2*(h(i - 1) + h(i))

h(i) 'Ignore A(norder)

h(i - 1) 'Ilgnore B(0)

i
D(j)
A)
B()

le, C(10) As Double, R As Double

Next i

‘Set Constant Matrix C
Fori=2 To (norder - 1)
j =i-1'Shift to TDMA coordinate system
N Ct(J_) =6 ((y(i + 1) - y(@®) / h() - (y(0) -
extl

' Max tdma length
ntdma = norder - 2

‘'TDMA
" Upper Triangularization
Fori=2 To ntdma
R =B()/D(i- 1)
D(@i) =D(i) - R * A(i - 1)
C(i)=C()-R*C(i-1)
Next i
' Directly set the last C
C(ntdma) = C(ntdma) / D(ntdma)
' Back Substitute
Fori=(ntdma - 1) To 1 Step (-1)
C(i) = (C(i) - Al) * C(i + 1)) / D(i)
Next i
'End of TDMA

‘Switch from Cto S

Fori=2 To (norder - 1)
j =1i-1'Shift from TDMA coordinate system
S(i) = C(j)

Next |

'End conditions

S1)=0

S(norder) =0

'Calculate cubic ai,bi,ci and di from S and h
Fori=1 To (norder - 1)
A(@) = (S(i + 1) - S(i)) / (6 * h(i))
B(i) = S(i) / 2 . ‘ _
C(i) = (y(i+1)-y@®)/h@)-(2*h(@)*S
D(i) = y()
Next i

'Write out S,a,b,c,d Values

Fori=1 To norder
ActiveSheet.Cells(4 + i, 7) = S(i)
ActiveSheet.Cells(4 + i, 8) = A(i)
ActiveSheet.Cells(4 + i, 9) = B(i)
ActiveSheet.Cells(4 + i, 10) = C(i)
ActiveSheet.Cells(4 + i, 11) = D(i)

Next i

End Sub

y(i- 1)) /h(i - 1)

(i) + h(i) * S(i + 1)) / 6

Sub plotter()

'Data sizing

Dim x(10) As Double, y(10) As Double, norder As Int
Dim h(10) As Double

Dim i As Integer, j As Integer, step As Integer

Dim B(10) As Double, D(10) As Double, A(10) As Doub
Dim xs As Double, ys As Double

'Read in data-point order
norder = ActiveSheet.Cells(3, 3)

'Read in Cubic properties

Fori=1 To norder
x(i) = ActiveSheet.Cells(4 + i, 3)
h(i) = ActiveSheet.Cells(4 + i, 5)
A(l) = ActiveSheet.Cells(4 + i, 8)
B(i) = ActiveSheet.Cells(4 + i, 9)
C(i) = ActiveSheet.Cells(4 + i, 10)
D(i) = ActiveSheet.Cells(4 + i, 11)

Next i

'Read in steps
nstep = ActiveSheet.Cells(18, 3)

‘Determine and write out X,Y
step=0
Fori=1 To (norder - 1) 'Discrete function step
Forj=1To nstep
step=step+1
xs = x(i) + (h(i) / nstep) * (j - 1)
0 ys = A(l) * (xs - x(i)) * 3 + B(i) * (xs -
D(i
ActiveSheet.Cells(step, 15) = xs
ActiveSheet.Cells(step, 16) = ys
Next j
Next i

End Sub

eger, nstep As Integer

le, C(10) As Double

x() ~ 2+ C(i) * (xs - x(i)) +

