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Cubic Spline Tutorial 
 
Cubic splines are a popular choice for curve fitting for ease of data interpolation, integration, differentiation, 
and they are normally very smooth.  This tutorial will describe a computationally efficient method of 
constructing joined cubic splines through known data points.  Consider the problem of constructing 2 cubic 

splines to fit 3 data points (x1,y1), (x2,y2), (x3,y3).  This 
is the simplest case of cubic spline interpolation that 
will illustrate the methods used in more normal cases 
where several points are present.  The key 
characteristics of cubic spline interpolation are: 
 
1.  The curves pass through all specified data points 
2.  1st derivative continuity at interior points 
3.  2nd derivative continuity at interior points 
4.  boundary conditions specified at the free ends 
 
We begin with the equations of the two splines: 
 

spline #1       spline #2 
y = a1(x-x1)3 + b1(x-x1)2 + c1(x-x1) + d1   y = a2(x-x2)3 + b2(x-x2)2 + c2(x-x2) + d2 
y' = 3a1(x-x1)2 + 2b1(x-x1) + c1     y' = 3a2(x-x2)2 + 2b2(x-x2) + c2 
y" = 6a1(x-x1) + 2b1      y" = 6a2(x-x2) + 2b2 
 
For now, we’ll focus on spline #1.  We start with the 2nd derivative.  Imposing the compatibility constraints that 
y" = y1" at x = x1 and y" = y2" at x = x2, and calling x2-x1 = h1: 
 
y1" = 6a1(x1-x1) + 2b1 = 0 + 2b1 = 2b1    b1 =  y1"/2 
y2" = 6a1(x2-x1) + 2b1 = 6a1h1 + y1"    a1 =  (y2"-y1")/6h1 
 
This results in the following equation for the 2nd derivative: 
 
y" = (x-x1)(y2"-y1")/(x2-x1) + y1"  
 
which can be verified to be correct (i.e. y" = y1" at x = x1 and y" = y2" at x = x2).  Next, apply the conditions that 
the spline pass though the points, in other words y1 = f(x1) and y2 = f(x2): 
 
y1 = 0 + 0 + 0 + d1      d1 = y1 
y2 = (x2-x1)3(y2"-y1")/6h1 + y1"(x2-x1)2/2 + c1(x2-x1) + y1  
y2 = h1

3(y2"-y1")/6h1 + y1"h1
2/2 + c1h1 + y1 

y2 = h1
2(y2"-y1")/6 + y1"h1

2/2 + c1h1 + y1 
  

y2-y1 = y2"h1
2/6 - y1"h1

2/6 + y1"h1
2/2 + c1h1 

(y2-y1)/h1 = y2"h1/6 - y1"h1/6 + y1"h1/2 + c1  
(y2-y1)/h1 = y2"h1/6 - y1"h1/6 + 3y1"h1/6 + c1  
(y2-y1)/h1 = y2"h1/6 + y1"h1/3 + c1    c1 =  (y2-y1)/h1 – y2"h1/6 - y1"h1/3 
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Finally, impose the compatibility condition that y2' in spline 1 must equal y2' in spline 2: 
 
3a1(x2-x1)2 + 2b1(x2-x1) + c1 = 3a2(x2-x2)2 + 2b2(x2-x2) + c2 
3a1h1

2 + 2b1h1 + c1 = c2 
h1(y2"-y1")/2 + y1"h1 + (y2-y1)/h1 - y2"h1/6 - y1"h1/3 = (y3-y2)/h2 – y3"h2/6 – y2"h2/3 
h1(y2"-y1")/2 + y1"h1 - y2"h1/6 - y1"h1/3 + y3"h2/6 + y2"h2/3 = (y3-y2)/h2 - (y2-y1)/h1 

3h1(y2"-y1") + 6y1"h1 - y2"h1 - 2y1"h1 + y3"h2 + 2y2"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1 

3h1y2" – 3h1y1" + 6y1"h1 - y2"h1 - 2y1"h1 + y3"h2 + 2y2"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1 

y1"(6h1 – 3h1 – 2h1) + y2"(2h1 + 2h2) + y3"h2 = 6(y3-y2)/h2 - 6(y2-y1)/h1 

 
h1y1" + 2(h1 + h2)y2" + h2y3" = 6[(y3-y2)/h2 - (y2-y1)/h1]  (1) governing equation for cubic splines 
 
Generalizing, this equation results in a tri-diagonal set of linear equations (Ax = b), where x represents the 
unknowns (2nd derivatives of the points), and b is the right hand side.  Tri-diagonal sets of linear equations are 
efficiently solved with specialized algorithms. 
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If equal point spacing is used (i.e. h1 = h2 = …hn-1 = h), even more simplification can be made: 
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The first and last equations represent the boundary conditions of the free ends of the spline that must be chosen.  
Often, so called ‘natural’ boundary conditions are used, where the 2nd derivative is set to zero.  Natural 
boundary conditions result in total minimum curvature.  Other boundary conditions can be used.  For example: 
 
1.  Natural boundary conditions  y1" = 0     yn" = 0   
2.  Parabolic runout     y1" = y2"    yn-1" = yn"   
3.  Zero slope           
4.  Specified 1st derivative          
5.  Specified 2nd derivative   s1 = y1"    sn = yn" 
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Example Problem #1: 
 
Let’s illustrate with a specific problem: fit 2 cubic splines to the function y = x3 in the range of x = 0 to 1.  Thus, 
x1 = 0, y1 = 0, x3 = 1, y3 = 1.  We’ll pick x2 = 0.5 (thus y2 = 0.125) and use natural boundary conditions.  Because 
the only unknowns are the 2nd derivative at each point, we have a 3 x 3 matrix to solve.  Also, since (x2-x1) = h1 
= (x3-x2) = h2 = 0.5, we can used the simplified version (Note: . means zero): 
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The solution is [y1", y2", y3"]T = [0, 4.5, 0]T.  Note: in this case the solution is trivial, y2" = 18/4.  From this we 
can calculate the coefficients of the cubic spline segments: 
 
a1 =  (y2"-y1")/6h1 b1 =  y1"/2  c1 =  (y2-y1)/h1 – y2"h1/6 – y1"h1/3  d1 = y1 
a2 =  (y3"-y2")/6h2 b2 =  y2"/2  c2 =  (y3-y2)/h2 – y3"h2/6 – y2"h2/3  d2 = y2 
a1 =  1.5  b1 =  0   c1 =  -0.125     d1 = 0 
a2 =  -1.5  b2 =  2.25  c2 =  0      d2 = 0.125 

 
As can be seen in the plot, the cubic spline 
interpolation doesn’t fit the function very 
well.  Wait a minute.  How can 2 cubic 
splines not fit a cubic polynomial very well?  
It should be a perfect fit, especially since it 
only takes 1 cubic spline to represent the 
cubic polynomial function y = x3.  The 
answer is that we forced the 2nd derivative 
of the spline to be zero at each free end.  
This works fine at x = 0 for the function y = 
x3  because the 2nd derivative of this function 
is indeed 0 at x = 0.  However, it isn’t a 
good choice at x = 1 because the 2nd 
derivative of y = x3 at x = 1 is 6x = 6.  If the 
boundary condition of x3 is changed to 
reflect a value of 6 instead of 0, the fit is 
perfect.  This illustrates the importance of 
choosing appropriate boundary conditions 
for the problem at hand.   

Example Problem #2: 
 
As a final illustration, we will show how to enforce a slope at either end.  Recall the equation of the 1st 
derivative: 
 
At x = x1:  
 
y1' = 3a1(x1-x1)2 + 2b1(x1-x1) + c1 = 0 + 0 + c1 = c1 = (y2-y1)/h1 – y2"h1/6 – y1"h1/3 
(2h1)y1" + (h1)y2" =  6[(y2-y1)/h1 - y1'] 
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At x = x3:  
 
y3' = 3a2(x3-x2)2 + 2b2(x3-x2) + c2 =  3a2h2

2 + 2b2h2 + c2 

y3' = 3h2
2(y3"-y2")/6h2 + 2h2y2"/2 + (y3-y2)/h2 – y3"h2/6 – y2"h2/3 

y3' = 3h2(y3"-y2")/6 + h2y2" + (y3-y2)/h2 – y3"h2/6 – y2"h2/3 
h2y3"/2 - h2y2"/2 + h2y2" – y3"h2/6 – y2"h2/3 = y3' - (y3-y2)/h2 

3h2y3" - 3h2y2" + 6h2y2" – y3"h2 – 2y2"h2 = 6(y3' - (y3-y2)/h2) 
y3"(3h2 – h2) - y2"(6h2 – 3h2 – 2h2) = 6(y3' - (y3-y2)/h2) 
(h2)y2" + (2h2)y3" = 6[y3' - (y3-y2)/h2] 
 
If we were to force the slope to be zero at both ends, the matrix equation would be: 
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Using the simplified version, we have: 
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The solution is [y1", y2", y3"]T  = [-3, 9, -15]T, from 
which we can calculate the spline segment coefficients 
and plot the result. 
 
Conclusion: 
 
We have demonstrated a method of formulating cubic 
splines to interpolate a given set of points and shown 
how to implement various free end boundary 
conditions.  
 
Discussion: 
 
The formulation described here is by no means the 
only one - there are other formulations of cubic 
splines.  One possibility is to set up the matrix 

equations to directly calculate the spline segment coefficients, but it requires a matrix of dimension 4*(n-1), 
which is much more computationally intensive than the method shown here.  If it is desired to not choose the 
free end boundary conditions, the splines on either end can be fit to the 3 points instead of 2, or the method 
illustrated here can be used with the boundary conditions determined by fitting splines to 4 points on either end.  
These are just a few of the possible techniques for cubic spline interpolation. 
 
 
 
 


