*

```
```

DUAL_DIFF_Thd_Temp

```
DUAL_DIFF_Thd_Temp
```

$*$
$*$
$*$
$*$
$*$
$*$
$*$
$*$
$*$

```


\section*{begin}
```

unset \quad interrupt
let
while
let
alter
alter
set
let

j	$=1$	
$(j$	$<$	NoOfNx $)$
$N X$		NxVals[j-1

```

```

QN2 area = \$\&Nx
set thisName = $NameList[$\&j]
let \$thisName = 0*vector(NoOfVin)

* =================Loop_Vin===============

let	k	$=1$
while	$(k$	$==$
NoOfVin $)$		

let	Vin	$=$ NoOfVin
linVals	k-1	

alter
e_gainin gain = $&Vin
tran
linearize
set specwindow= "blackman"
set llll
let thdsq =mag(out[9])^2 +mag(out[14])^2 +mag(out[19])^2 +mag(out[24])^2
let thd_percent= 100*sqrt(thdsq)/mag(out[4])
echo
 "$\&unknown.Vin $&thd_percent"
let unknown.{$thisName}[unknown.k-1] = thd_percent

```


To Covert PDF to plain text click below
http://www.fileformat.info/convert/doc/pdf2txt.htm
This simulation only works on MacSpice for now. Data in spice apparently gets stored in vectors which are ready to be plotted.


In an attempt to improve the distortion of a differential input stage it was found that two offsetted differential input stages would be connected in parallel such that there is some distortion cancelation taking place. The amount of offset is a mater of taste. This simulation plots distortion as a input voltage and scaling. The results are shown below. For instance with a scale factor of 5, the 1 \% input level can be increased to 65 mVs which is certainly much better than the 18mV level for a normal differential input stage.


While this input stage goes a long way in reducing the need for a pre-distortion stage, neither the overall effects of offset and noise are reduced because of there is an addition of more transistors.```

