```
AB_BIAS_DIFF_Thd_NX
* www.idea2ic.com
* dsauersanjose@aol.com 4/23/08
    M,
*
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline . OPTIONS & \multicolumn{2}{|l|}{GMIN=1e-18} & \multicolumn{2}{|l|}{METHOD=trap} & \multicolumn{3}{|l|}{srcsteps \(=1\)} & \multicolumn{2}{|l|}{gminsteps \(=1\)} \\
\hline VCC & VC & 0 & & DC & 10 & & & & \\
\hline VAC1 & VIN & 0 & & DC & 0 & SIN( & 0 & 1 & 1000 \\
\hline IB1 & 0 & VBN1 & & 1 u & & & & & \\
\hline IB2 & 0 & VBN2 & & 1 u & & & & & \\
\hline QN1 & VBN1 & VBN1 & VE4 & NPN1 & 4.50 & & & & \\
\hline QN2 & VBN1 & VBN1 & VE3 & NPN1 & 1.00 & & & & \\
\hline QN3 & VCN3 & VBN1 & VE3 & NPN1 & 15.00 & & & & \\
\hline QN4 & VCN4 & VBN2 & VE4 & NPN1 & 15.00 & & & & \\
\hline QN5 & VBN2 & VBN2 & VE4 & NPN1 & 1.00 & & & & \\
\hline QN6 & VBN2 & VBN2 & VE3 & NPN1 & 4.50 & & & & \\
\hline QP1 & 0 & VBP1 & VE3 & PNP1 & 1.00 & & & & \\
\hline QP2 & 0 & 0 & VE4 & PNP1 & 1.00 & & & & \\
\hline R3 & VCN3 & VC & 1K & & & & & & \\
\hline R4 & VCN4 & VC & 1K & & & & & & \\
\hline E_DIF & OUT & 0 & VCN3 & VCN4 & 1 & & & & \\
\hline RŌUT & OUT & 0 & 1K & & & & & & \\
\hline E_GAININ & VBP1 & 0 & VIN & 0 & 1 m & & & & \\
\hline
\end{tabular}
.control
```



```
let NoOfNx = length(NxVals)
begin (interrupt
```



```
* =================Loop_Vin================
let k = 1
while (k <= NoOfVin )
let Vin = VinVals[k-1]
llor llog
tran
set specwindow= "blackman"
spec 200 8k 200 v(out)
let thdsq =mag(out[9])^2 +mag(out[14])^2 +mag(out[19])^2 +mag(out[24])^2
let thd_percent= 100*sqrt(thdsq)/mag(out[4])
echo "$&unknown.Vin $&thd_percent"
let unknown.{$thisName}[unknown.k-1] = thd_percent
repeat 3
destroy
end
if ($?interrupt)
goto bail
endif
let k = k + 1
endwhile
setscale VinVals
plot $NameList loglog title "AB_BIAS THD_% vs Vin_pK and Nx"
let j = j + 1
endwhile
label bail
echo "Done."
end
. endc
```



```
.model PNP1 PNP( BF=2100 VAF=21)
.end
=====================END_OF_SPICE==========================
To Covert PDF to plain text click below
http://www.fileformat.info/convert/doc/pdf2txt.htm
```

This simulation only works on MacSpice for now. Data in spice apparently gets stored in vectors which are ready to be plotted.

The invention below is an AB_biased differential input stage which can put out more differential current than it draws DC wise. The current gain is defined by the N ratio. The A bias of the AB_Biased aspect is defined by the M area ratio term.

This simulation tests various sizes of the N area ratio. The larger the value of N, the more output current can take place in output transistors QN3 and QN4. But a higher value of N relative to M also draws more supply to make the input stage more A bias. This lowers the noise and offset benefits.

It is the ability for the output current to be able to be larger than the DC current which gives the benefits of effective lower noise and offset. But just being able to handle larger input signal voltages has its benefits was well.

The AB_Biased input stage needs to be put into a LM3080 OTA circuit to do an actual comparison in performances.

