
A Level-Crossing Flash Asynchronous Analog-to-Digital Converter

Filipp Akopyan, Rajit Manohar, Alyssa B. Apsel∗

Computer Systems Laboratory
Electrical and Computer Engineering

Cornell University
Ithaca, NY 14853, U.S.A.

Abstract

Distributed sensor networks, human body implants, and
hand-held electronics have tight energy budgets that ne-
cessitate low power circuits. Most of these devices in-
clude an analog-to-digital converter (ADC) to process ana-
log signals from the physical world. We describe a new
topology for an asynchronous analog-to-digital converter,
dubbed LCF-ADC, that has several major advantages over
previously-designed ADCs, including reduced energy con-
sumption and/or a simplification of the analog circuits re-
quired for its implementation.

In this paper we describe the design of the LCF-ADC
architecture, and present simulation results that show low
power consumption. We discuss both theoretical considera-
tions that determine the performance of our ADC as well
as a proposed implementation. Comparisons with previ-
ously designed asynchronous analog-to-digital converters
show the benefits of the LCF-ADC architecture. In 180 nm
CMOS, our ADC is expected to consume 43 µW at 160 kHz,
and 438 µW at 5 MHz.

1 Introduction

There is significant interest in ultra low power circuits to-
day due to their applications in embedded sensing systems.
Such systems may be deployed for environmental monitor-
ing applications, or may be implanted into human body for
health and brain activity monitoring. The major require-
ment for these circuits is that they must be able to perform
the necessary application-specific analysis while running on
small portable energy sources. A high-level overview of
such embedded systems is shown in Figure 1. Common
sensors include devices that measure temperature, pressure,
vibration, or acceleration. The output of the system could
be transmitted over a wireless link, or could be used in-situ

∗E-mail: {filipp,rajit,apsel}@csl.cornell.edu

input signalphysical phenomenon
or noise

digital representation

detect/
estimate the

phenomenon of
interest

sensor

analog-to-digital

digital
processing

Figure 1. Data flow in an embedded sensing
system

depending on the nature of the application.
An analog-to-digital converter (ADC) is an integral part

of the overall system, as it enables the sensor to interface
with a low-power processor. The sensor networking pro-
cessor’s power consumption may be on the order of nW [4].
Ensuring that the ADC’s power consumption is low, is an
important part of reducing the overall system’s power con-
sumption.

Input Signal Considerations. Conventional signal pro-
cessing techniques are based on Nyquist sampling. In such
systems, the samples are taken periodically, with the clock
set at least at twice the maximum frequency of the input sig-
nal. In most cases, the clock frequency is higher than twice
the maximum frequency and the converters oversample the
input signal to increase the effective precision. Such cir-
cuits consume a constant amount of power even if there is
no change in the input signal [9].

A wide class of measured signals have the property that
the signals don’t change rapidly; they are constant for some
time, then change their value and return back to idle state.
Consequently, a lot of power in a Nyquist sampling ADC
is wasted; in signal processing terms, the signal is non-

donsauer
Highlight

donsauer
Highlight

donsauer
Highlight

donsauer
Text Box
 more links at end

stationary and therefore the optimal sampling rate should
adapt based on the signal characteristics. For the purpose of
eliminating the circuit power consumption when the input is
stable, we use two existing techniques to design the ADC:
(i) we adopt an asynchronous event-driven circuit approach,
these circuits idle when there is no change at the input;
(ii) we adopt an implicit sampling approach, also known
as level-crossing sampling.

Sampling scheme. The level-crossing scheme is non-
uniform in time domain; it is based on the concept of pre-
determined reference levels, where a sample is taken only
if a reference level is crossed. The samples are not taken
at a constant rate, but are only obtained if there is a suffi-
cient change in the input analog signal. A simple version of
this approach that only detects the sign of the input signal
(zero-crossing sampling) has been extensively studied by
the signal processing community beginning with the work
of Rice [23]. Kedem provides an excellent overview of the
work in this area [10]. The concept of level-crossing sam-
pling has been previously studied as a method of sampling
utilized in analog-to-digital conversion and in data com-
pression [18, 25]. More recently, Renaudin et al. developed
an ADC using the level-crossing approach [2].

Contributions. We present a new topology for an asyn-
chronous level-crossing-based ADC (LCF-ADC). Unlike
Renaudin’s approach, the time in the LCF-ADC is not
tracked explicitly. Each level-crossing event is represented
by a one-bit data token produced at the output. The value
“1” indicates that the input signal has crossed the given
level from below; the value “0” indicates that the input
signal has crossed the level from above. Using the ob-
tained bit sequence (differential encoding: only 1-s and
0-s), downstream processing of the binary stream can be
implemented [11]. This type of encoding is known as
asynchronous delta modulation; it was proposed by Watan-
abe [8] and was previously used by Tsividis [14, 15]. In
addition, the LCF-ADC can be configured in such a way
that it detects the situation when the input signal exceeds its
design parameters, and this detection can be used to activate
a more sophisticated ADC if necessary. As stated in the ab-
stract, in 180 nm CMOS, our ADC is expected to consume
43 µW at 160 kHz, and 438 µW at 5 MHz.

Related Work. There is an enormous body of literature
on ADCs, including several books on the subject [9]. A
comparison of using synchronous and asynchronous meth-
ods [13] for ADCs studied the effect of using asynchronous
logic in ADC implementations; previously, a flash-type
ADC was implemented using micropipelines [12].

Recently, several schemes utilizing level-crossing were
developed [1, 2]. However, the goal of those designs is sig-

nal reconstruction. Those systems record sample time and
reconstruct the original signal to perform signal processing
operations. Instead, our idea is to process the level cross-
ings without reconstructing the original input. As shown by
Kedem [11], such processing is possible by directly formu-
lating detection and estimation problems with the implicit
signal representation. Tsividis has demonstrated advantages
of continuous time signal processing utilizing only a quan-
tizer [27].

In our architecture we do not record the times at which
the samples are taken. This technique reduces the power
consumption even further by eliminating the circuitry that
deals with time-tracking. In case we need to reconstruct
the original signal, the time information is still embedded
in the relative delays of the output samples. This infor-
mation can be extracted at any time if necessary, by the
means of a simple digital counter (and calculating the time
elapsed since the previous sample has appeared at the out-
put), which can be easily added to our circuit. Our approach
adopts a completely different ADC topology: instead of
using the feedback-based approach adopted by Renaudin
(and, following Renaudin, by Shepard [14]), we use a par-
allel architecture that resembles a flash-type ADC.

2 LCF-ADC Architecture

The LCF-ADC architecture is a mixed-signal circuit,
containing analog parts and asynchronous digital parts.
For the design of the asynchronous digital circuits we
use the quasi-delay-insensitive (QDI) style [20] due to
its robustness to process, voltage, and temperature varia-
tions. The circuits are implemented using Martin’s synthe-
sis method [19] that translates a high-level design descrip-
tion to circuits through handshaking expansions, and pro-
duction rules.

When designing the LCF-ADC, our main goal was to
minimize the ADC’s power consumption, while still main-
taining a reasonable frequency of operation. Our LCF-ADC
was optimized for the input signal bandwidth of 5 MHz.
We chose this requirement based upon a survey that exam-
ines bandwidths of commercially available sensors includ-
ing pressure sensors, temperature sensors, and accelerome-
ters.

The proposed ADC structure consists of the following
main components, shown in Figure 2. The analog com-
parators compare the analog input signal to corresponding
reference levels. Voltage controlled regenerative compara-
tors were used to increase noise immunity of the ADC as
described in Section 3. The comparator’s output value, as
well as the internal state variables of the digital circuit, con-
trol the digital trigger that sends a request to process the
sampled data. As soon as the request becomes active, it is
processed by the asynchronous digital logic that outputs one

donsauer
Highlight

donsauer
Highlight

donsauer
Highlight

Asynchronous
Circuitry

MERGE

Element

Comparators

Asynchronous
Processing

token

Circuitry
Analog

Vref2

Vref2m

Vref1

Vin

Figure 2. Proposed ADC Structure

bit. Each bit on the output represents a level-crossing. If the
level was crossed by the input signal from below, the circuit
sends a “1” on a dual-rail output channel, and if the input
signal crossed the level from above, the circuit outputs “0”
on the same dual rail channel, as shown in Figure 3.

The levels of the LCF-ADC are specified by a resistive
or capacitive divider, as described later. Once a level is
crossed by the input signal, the comparator changes its out-
put. If the signal was above and crossed down, the out-
put of the comparator changes from high to low and vice
versa. As soon as the digital trigger identifies the change
in the comparator’s output, it checks the states of the pre-
vious and next asynchronous processing elements and if all
the variables indicate that the crossing has occurred and no
conditions were violated, the trigger sends a request to the
asynchronous logic.

The asynchronous processing element checks whether it
has the permission to output the value corresponding to the
crossing, and as soon as the permission is granted, it outputs
a “0” or a “1.” Mutual exclusion is maintained by using a
token-based scheme implemented in the asynchronous dig-
ital part.

Operation continues until Reset occurs or until the sys-
tem is shut down. All the processing elements except the top
and the bottom elements function identically. The precision
of the ADC can be increased by replicating the comparator,
processing element, digital trigger parts and scaling the out-
put merge appropriately. The replicated nature of the ADC
also simplifies the physical design of the overall architec-
ture.

3 Design of the LCF-ADC

The LCF-ADC circuits have three major parts: the ana-
log circuits, the digital trigger that interfaces between the
analog circuits and the digital parts, and the asynchronous

t3

Voltage

V_ref2

V_trig+
V_ref1

V_trig−

V_trig−

V_trig+

Time Time

"1"

"0"

Digital OutputInput Signal

t1 t2 t3t1 t2

Figure 3. Output of the LCF-ADC

digital circuits that include the processing element and the
output merge.

3.1 Analog Circuitry

Voltage Divider. We have designed our voltage divider to
generate reference voltages for a set of comparators with
high input impedances. As a result, no current is drawn
from the divider circuit nodes; and either a capacitive or a
resistive divider may be used. We choose to use a capacitive
divider to minimize power drawn from the supply. If neces-
sary, the levels on the divider can be periodically reset using
series transistors between those nodes. The resistive divider
approach is more suitable when using aggressively scaled
process technologies that have substantial gate leakage, or
lack linear capacitors.

Regenerative Comparator. To prevent spurious outputs,
the comparator must be able to suppress a noisy input signal
so that changes are not detected when the input is fluctuat-
ing at the reference level. The comparator must operate at
least at 5 MHz (higher than the maximum frequency of op-
eration of the targeted sensors and implants).

In our application, the comparator is used to convert a
slowly changing input signal into digital logic levels with
sharp edges. If the environment is noisy (meaning the sig-
nal is fluctuating), or if the noise from the rest of the circuit
is high, several problems can arise. If the response time of
the comparator is faster than the variation of the input signal
around the threshold level, the output will chatter between
’high’ and ’low’ logic values as the input crosses the thresh-
old. This output variation can be eliminated by employing
positive feedback that forces a comparator to behave as a
regenerative latch. In this case, the circuit will exhibit hys-
teresis. In our design we have decided to implement com-
parators with hysteresis to tolerate noisy inputs.

The differential regenerative comparator with hysteresis
utilized in our design is presented in Figure 4 and is ex-
plained by Gregorian [5]. Similar topologies were previ-
ously utilized in ADC designs [24, 26]. The major differ-
ences between a common Schmitt trigger and the configu-
ration used in our design will be discussed.

The differential topology uses only eleven transistors,
and no resistors, unlike the common Schmitt trigger con-

M9

Vdd

Vout
Vin− Vin+

Vbias

Vss

M3 M5 M6 M4

M7M8

M1 M2

M10

M0

Figure 4. Regenerative Comparator

figuration. The design is based on the differential pair M1
and M2, the bias transistor M0, load devices M3 and M4,
and the cross-coupled pair M5 and M6. The only purpose
of the current mirror and transistors M7, M8, M9, M10 is
to provide additional gain for sharper output edges and to
convert the differential output to a single-ended output. The
bias transistor M0 sets the current flowing through the cir-
cuit. The higher the current, the more power is consumed
as the output impedance is lowered and higher bandwidth
may be achieved. Power consumption can be traded off for
bandwidth of the comparator to some extent depending on
the application of the LCF-ADC. M3 and M4, along with
gm of M1 and M2, set the gain of the first stage: the larger
the load devices, the higher the gain is and the more par-
asitic capacitance is introduced by these devices. M5 and
M6 provide positive feedback and determine the amount of
hysteresis for the comparator.

High precision operation may be achieved only if the
transistors are properly matched. Otherwise, the trip points
of the circuit, as well as the gain and bandwidth may be
shifted. Good matching is achieved by proper transistor siz-
ing and layout techniques. The bandwidth of the compara-
tor may be improved by increasing the transistor widths of
M1 and M2 as the load devices are shrunk (to maintain the
same gain of the comparator), or as mentioned before, by
increasing the bias voltage at the gate of M0, at the cost of
increased power consumption. The trip points of the circuit
are mainly determined by the ratio of M5 to M3 (M6 to M4
have to be matched). The differential gain is large due to
relatively high output resistance of the circuit.

The full derivation of the comparator’s trip points, as
well as the stability conditions are presented in Gregorian’s
work [5]. However, we mention the formulas that determine
the trip points of the comparator for completeness, since
these values specify the amount of hysteresis present in the
circuit. If we label the currents through M1 and M2, as i1
and i2 respectively and their sum as i0, it can be shown that
the switching points can be calculated as follows:

Vtrig+ =
√

i0
K′(W/L)1

·
√

α−1√
1+α

Vtrig− =
√

i0
K′(W/L)1

· 1−
√

α√
1+α

α = (W/L)5
(W/L)3

= (W/L)6
(W/L)4

K ′ = 1
2 · µ× Cox

In these formulas,
W/L - transistor width-to-length ratio
Cox - oxide capacitance
µ - mobility of holes
α - positive feedback factor

The hysteresis, as mentioned before, is a function of the ra-
tio of the sizes of the cross-coupled to the load transistors,
as well as the sizes of the input transistors. In order to ob-
tain regenerative behavior the value of α has to be greater
than 1. In our design, α was chosen to be 1.33 to obtain
a region around the reference voltage that rejects noise in
the input signal. The value of α should be selected depend-
ing on the application of the LCF-ADC (depending on the
noise level of the environment). Under normal operation,
the amount of hysteresis on one side of the reference level,
should not exceed half of the voltage difference between the
two adjacent bits (i.e. LSB and the next bit).

The positive voltage supply used in the circuit is 1.8 V
and the negative voltage supply has to be set to -400 mV
in order to obtain the full range of 1.8 V at the input of the
comparators (to be able to have voltages down to 0 Volts as
reference levels). Otherwise, if the negative voltage supply
is just GND, then the lowest value that the comparator can
recognize as a reference voltage is approximately 400 mV,
which limits the input range of the ADC. If the negative
voltage supply is undesired, the NMOS and PMOS pairs
may be flipped and a single voltage supply of 2.2 V will
then be used.

The transistors in the comparator must be sized carefully.
Transistors that are too small are susceptible to poor match-
ing, which can result in nonlinearities in the output. Transis-
tors that are too large present significant parasitic capacitive
loads which may limit the speed of the circuit. There is a
natural tradeoff between the bandwidth of the comparator
and transistor matching (precision). We have chosen tran-
sistors that are several times bigger than the minimal size
transistors to obtain the necessary bandwidth and to pro-
vide reliable matching. In general, if lengths of transistors
are chosen to be greater than 1 µm, the threshold voltages
of the transistors are considered to be well-matched.

The current through the comparators can be varied exter-
nally if desired, since we propose to route the bias voltage
node to the outside of the chip in order to be able to con-
trol the bandwidths (and gains) of comparators. One exter-
nal control signal can be used to tune the bandwidths of all
comparators identically.

3.2 Digital Circuitry

The main purpose of the asynchronous logic in the LCF-
ADC is to ensure the proper recognition of level crossings
and to output the valid data. We use serial data transfer for
the purpose of minimizing the number of wires that have
to connect to our ADC. The output of the LCF-ADC rep-
resents the change of the input signal with respect to the
previous sample and not the complete n-bit sample. This
scheme decreases the bandwidth required to send the output
and is advantageous from the data compression perspective.

MERGE

Trigger & StatisizerComparator

Vdd

C/2

C

C

C

C/2

V_in

Trigger

Trigger

Trigger

Trigger

Asynchronous
Processing
Element

Vss

token

Figure 5. Overall Structure of the LCF-ADC

The overall detailed diagram of a two-bit (four-level)
LCF-ADC is presented in Figure 5. As described in Section
3.1, a capacitive divider is used to set the reference volt-
ages. The analog comparators detect whether the input sig-
nal is above or below the set threshold. The output of each
comparator is connected to a digital trigger. The trigger
checks the state of the two neighboring asynchronous pro-
cessing elements to determine whether the reference level
was crossed or not. If the crossing condition (as described
later in this section) is true, the trigger performs a hand-
shake on a dataless channel connected to its corresponding
asynchronous processing element which then generates the
appropriate output. The functionality of the asynchronous
processing element will be described in the subsequent sec-
tion. After processing the sample, the asynchronous el-
ement outputs the direction of the crossing to the output
merge, which combines all its exclusive inputs into a sin-
gle output channel.

The digital circuitry initializes (and resets) in a state
where no requests are sent by the trigger and all the commu-
nication channels of the processing element are in known
states. The initial state is achieved by the means of reset
transistors connected to the asynchronous digital gates. The
design also allows the ADC to track the signal if on startup
the input is somewhere between the first and the last refer-

ence levels. The same tracking is utilized if the maximum
frequency of the ADC is exceeded.

Asynchronous Processing Element. The basic structure
of the asynchronous processing element is shown in Figure
6. Each element has two local variables: k and t. The
variable t indicates whether the given element has the token
(there is only one token in the system); possession of which
gives permission to this element to output data. If the token
is present, k indicates whether the input signal is above or
below the given level. In the case of absence of the token, k
indicates whether the token is above or below this element.

Each processing element has 5 external channels. Chan-
nel “INPUT” represents the dataless channel from the dig-
ital trigger. The “OUTPUT” channel is used to output data
to the merge. Channel “RECEIVE from ABOVE” gets acti-
vated when the element above requests the token; the given
element then passes the token up. Similarly, channel “RE-
CEIVE from BELOW” gets activated when the element be-
low requests the token; the given element then passes the to-
ken down. The other two channels “SEND UP” and “SEND
DOWN” are used if the given element needs to request the
token from the neighboring elements; the adjacent element
then passes the token to the given element. At all times
presence of the token represents the last level crossed.

By design of the LCF-ADC, the token cannot skip ele-
ments, thus if a request is obtained by the processing ele-
ment from the trigger and the given element does not have
the token, the token is either immediately above or immedi-
ately below the given element depending on the value of k
(due to the design of the digital trigger). The complete high-
level description of a processing element (in CHP notation,
summarized in the Appendix) is presented in Program 1.

The variable legend is as follows:
A - request from the trigger
D - request for the token from below
U - request for the token from above
t - variable that is true if the token is present

(Variabel k)

Asynchronous Processing Logic

MAIN_PROCESS

TOKEN_CHECK_PROCESS

Channel INPUT (A)

Channel RECEIVE from ABOVE (U)

Channel OUTPUT (E)

Channel SEND DOWN (D_previous)

Channel SEND UP (U_next)

Channel RECEIVE from BELOW (D)

(Variable t)

Figure 6. Asynchronous Processing Unit

Program 1 CHP: LCF-ADC, One Processing Element

MAIN PROCESS ≡
*[[A −→ Y ; t↑;E !(¬k); k := ¬k ;A
[] D −→ D ; t↓; k↓
[] U −→ U ; t↓; k↑
]]

TOKEN CHECK PROCESS ≡
*[[Y ∧ ¬t −→ [k −→ U next [] ¬k −→ D previous]
[]Y ∧ t −→ skip
]; Y
]

k - true if token is above, false if below
E - output channel that indicates direction of crossing
Y - internal channel used for a “process call”

Each level of the LCF-ADC starts out in an inactive
mode with all variables initialized to predetermined values.
Specifically, variable t is ’false’ in all processing elements
except the bottom one. In the bottom element, t is initialized
to value ’true’, since there is only one token in the system.
The variable k is initialized to a low value in all processing
elements.

The two processes in the CHP that are executed infi-
nite number of times are: TOKEN CHECK PROCESS and
MAIN PROCESS. The MAIN PROCESS performs a de-
terministic selection between the input probes, which can
only become true one at a time (probes have to be mutually
exclusive). As soon as one of the request probes becomes
true, one of the following holds: either the trigger indicates
that the level was crossed, or the element above requests for
the token, or the element below requests for the token.

If the trigger indicates that the level was crossed, the
request is generated and TOKEN CHECK PROCESS is
started to verify the presence of the token on the given level.
If the token is not present (t is false), the element sends
the request to the neighboring element, immediately above
or immediately below the given element depending on the
value of k. If k is true the request is sent up; if k is false the
request is sent down. If the token is present (t is true), the
execution of the selection is terminated with a skip.

When the TOKEN CHECK PROCESS is finished, the
element “knows” that the token is present on its own level,
thus, the value of t becomes true (if it was not true before).
At this point (since there is only one token in the system),
it is safe to produce an output. A value of ’1’ at the output
indicates that the level was crossed up and the value ’0’ in-
dicates that the level was crossed down. This bit assignment
is identical to sending the value of ¬k .

After the output is sent, the value of k is inverted, in-

enable

Pull

Logic

DownInputs

request

_Reset

_Reset

Figure 7. Digital Trigger Implementation

dicating that the signal has crossed the threshold in either
upward or downward direction (depending on the previous
value of k). After that action is finished, the handshake on
channel A is completed indicating that the element is done
processing the input request. The processing element is now
ready for the next request.

If the D probe becomes true, the element below the given
element is requesting the token. The communication on D
is performed right away to speed up the token transfer. The
value of t on the element is lowered, indicating that it does
not have the token any more. The value of k becomes false
indicating that the token is below this level.

If the U probe becomes true, the element above the given
element is requesting the token. The communication on U
is performed and the value of t on the element is lowered,
indicating that it does not have the token any more. The
value of k becomes true indicating that the token is above
this level.

Digital Trigger. The circuit that wakes up the asyn-
chronous digital processing element is the digital trigger.
The trigger is constructed as shown in Figure 7.

The Reset signal is used for resetting (usually initiated
off-chip by the user); this signal initializes the trigger in a
state with no active requests. The two transistors that have
enable (the inverted sense of the acknowledge of the data-
less channel connecting the trigger to the processing ele-
ment) connected to their gates indicate that the previous re-
quest was properly served. The request signal comes out
of the trigger through the inverter. The trigger becomes ac-
tive if one of the following conditions is satisfied, where the
following signals are the Inputs indicated on the diagram:

1. (i)-th comparator’s output is high, and (i)-th processing
element indicates that the input signal was below be-
fore, and (i-1)-th level indicates that the input signal is
above, and (i-1)-th element has completed processing
its request;

2. (i)-th comparator’s output is low, and (i)-th processing
element indicates that the input signal was above be-
fore, and (i+1)-th level indicates that the input signal is

below, and (i+1)-th element has completed processing
its request.

These rules for request generation enable tracking of the
input at startup and during violation of the maximum allow-
able frequency.

The output of the trigger is latched by a staticizer, since
the output of the comparator can change spontaneously.
However, the request to the asynchronous processing unit
must remain stable, even in the face of a changing analog
input signal. The request stays active until the processing
unit finishes serving that request.

Once the trigger sends the request to the processing unit,
the request is considered to be served when the output of
the processing unit is sent to the environment. The request
is then cleared automatically by the enable signal of the
trigger.

Output merge. The output merge is a standard determin-
istic merge (no arbiter required) between all the one-bit
channels, and is implemented in the standard way [17]. The
CHP description of this process is:

*[[E0 −→ E !(E0?) [] ... []En−1 −→ E !(En−1?)]]

4 Power Analysis

During the period of inactivity in the input signal, none
of the levels are crossed and thus, the outputs of analog
comparators remain constant. The triggers discussed in
the previous section do not send any requests to the asyn-
chronous processing elements. The asynchronous elements
stay in the “idle” mode until the level corresponding to this
element is crossed. The only power that is consumed by the
asynchronous elements is the leakage power.

Comparator array. In order to minimize the power con-
sumption of the analog comparators, we have used the fol-
lowing approach. At any moment, only two comparators
are on, meaning the power is supplied to only two compara-
tors. Note that this is very different from a conventional
flash ADC, where all the comparators must be turned on for
the ADC to operate.

Since the input signal is always between two levels, the
comparators corresponding to those two levels are the ones
enabled. Each comparator can determine whether or not it
should be enabled by examining the state of the correspond-
ing asynchronous processing element and its adjacent ele-
ments in the array. We use an additional circuit that gener-
ates a sleep signal that is used in the digital logic to control
the comparator’s power supply. The power to the compara-
tor is supplied if at least one of the following holds, where
(i), (i-1) and (i+1) represent instances of the current, the
previous and the next levels respectively:

1. The signal is above the (i-1) processing element and
below this (i) processing element;

2. The signal is above this (i) processing element and be-
low the (i+1) processing element;

3. The request is being processed by the current ele-
ment (this condition is needed to avoid a glitch on the
comparator’s power signal during the period when the
value of k is toggling).

Thus, if sleep signal is ’true’, the power should be cut-
off, otherwise the power should be on. The circuit that
controls the power to a comparator has to also disconnect
the output of the comparator when the power is turned off
to preserve the state of the trigger. When the power of
the comparator is off, the output signal will slowly drop
to −0.4V; as a result, the digital trigger may send a false
request to the processing element. In order to avoid that,
we put a transmission gate at the output of the comparator
that isolates the comparator from the digital trigger when
the comparator’s power is off. This circuit is shown in Fig-
ure 8. However, when the transmission gate disconnects
the comparator’s output from the trigger, we need to store
the last value outputted by the comparator in order to pro-
vide correct information to the trigger. This is done by the
means shown in Figure 8. The “modified staticizer” keeps
state only when the transmission gate is not conducting. For
this reason the signals that open and close the transmission
gate also control the staticizer’s feedback.

comparator_power

analog_output

PMOS_voltage

NMOS_voltage

NMOS_voltage

PMOS_voltage

Analog

Comparator

−0.4V

(−0.4V −> 1.8V)

to digital trigger (in)

to digital trigger (_in)

Figure 8. Comparator Output Latch

The circuit that generates the signals
comparator power, PMOS voltage, and
NMOS voltage shown in Figure 8 needs to perform
several functions. The circuit has to be “edge-sensitive”,
i.e. behave differently depending on whether the sleep
signal changes from ’0’ to ’1’, or ’1’ to ’0’.

If the sleep signal was false and becomes true; first, the
transmission gate stops conducting the output of the com-
parator to the digital trigger and the last value of the com-
parator’s output is stored by the staticizer. Next, the power
to the comparator turns off after some delay. This delay

is minimal and its implementation is described in the next
section. The delay allows the staticizer to store the correct
value of the comparator’s output.

If the sleep signal was true and changes to false, the
comparator’s power needs to turn on first. After some de-
lay, the transmission gate starts conducting the comparator’s
output to the digital trigger and the staticizer’s feedback is
turned off. The required delay in this case is longer in or-
der to let the comparator’s output settle to the correct value
before this value is passed to the digital trigger.

This scheme drastically decreases the power consump-
tion of the LCF-ADC. Instead of having all 2n compara-
tors working constantly, we have 2 comparators powered-up
both in the normal mode of operation and in the idle mode.
This property leads to a reduction in power consumption of
the ADC.

5 Evaluation

There are a number of considerations when designing
the LCF-ADC. We discuss the theoretical signal processing
aspects of the sampling scheme, followed by an evaluation
of the LCF-ADC design in terms of its power consumption.

5.1 Theoretical Considerations

Level-crossing sampling is an extension of the sim-
ple zero-crossing sampling concept. An analysis of zero-
crossing originated in the work of S.O. Rice [23]. Logan
analyzed the information content in the zero-crossings of
bandlimited signals, and argued that such signals can be re-
constructed from their zero-crossings up to a scale if they
do not share any zeros with their Hilbert transform [16].
The work of Beutler rigorously establishes the result that
a bandlimited signal can be reconstructed from samples as
long as the average number of samples exceeds the Nyquist
rate [3].

It is interesting to note the theoretical benefits as well
as limitations of a level-crossing ADC. A conventional uni-
form sampling ADC has two limitations: (i) The circuits for
the ADC have a finite bandwidth B; (ii) The sampling clock
has a fixed frequency that induces a second limitation Fs on
the input signal. If the input signal exceeds bandwidth Fs,
the ADC output exhibits aliasing since the replica copies
of the signal in the frequency domain will overlap within
the band specified by Fs [22]. Instead, a level-crossing
ADC only imposes a limit based on the bandwidth B rather
than an externally imposed sampling frequency. Therefore,
aliasing cannot occur unless the requirements of the circuits
of the level-crossing ADC are exceeded. One way to pre-
vent this from occurring is by introducing an analog filter at
the input to the level-crossing ADC.

A level-crossing ADC also effectively quantizes the out-
put. A conventional ADC that quantizes the output intro-
duces additional noise (the classic ∆2/12 quantization error
power, where ∆ is the spacing between the levels). How-
ever, the absence of sampling significantly reduces the in-
band noise for a level-crossing ADC [27].

Any realization of a level-crossing ADC implementation
has an upper bound M on the maximum number of output
samples in a fixed time interval T . (Lifting this assump-
tion is analogous to having an infinite sampling rate in a
conventional Nyquist-rate ADC.) A bandlimited signal x(t)
can be expanded in the sinc basis as

∑∞
k=−∞ xksinc((t −

kW)/W) with W = 2π/ωs where ωs is the maximum
frequency component in the signal, and xk are the coeffi-
cients that characterize x(t). The coefficient xk is the sam-
ple of the signal at time kW , sometimes denoted x[kW].
By Nyquist we know that we need at least T/W samples
to be able to reconstruct the original signal. Since there is
an upper bound M on how many samples a level-crossing
ADC will produce in a given amount of time (which directly
determines the bandwidth B), we can reduce W where
T/W > M . At that point, a level-crossing ADC will not
provide a sufficient number of samples to reconstruct the
original signal, resulting in erroneous reconstruction.

However, a level-crossing ADC does have the benefit of
being bandwidth-adaptive—the number of samples it pro-
duces is a function of the local Nyquist rate of the input.
For example, the number of zero-crossings of a stationary
Gaussian process is given by 1/π

√
−ρ′′(0), where ρ(τ) is

the correlation coefficient of the process, and we know that

−1/π2ρ′′(0) =

∫∞
−∞

4f2S(f) df∫∞
−∞

S(f) df
, which is the normalized

second moment of the power spectral density S. The square
root of this quantity is a measure of the support of S(f) in
the frequency domain and is upper bounded by 2fmax, and
so on average the number of crossings should be of the same
order as the Nyquist rate [7].

5.2 Design Evaluation

As mentioned earlier, it is important to make sure that
the comparators in the LCF-ADC have the bandwidths of
greater than or at least equal to the frequency with which
the requests will be processed.

Our circuit was simulated using Nanosim and HSpice
analog simulators in the TSMC 0.18 µm process. The max-
imum throughput that was achieved for the asynchronous
part alone with minimal transistor sizing was 220 MHz.
This sizing does not provide a shortest possible delay, but
provides minimal power consumption. At the frequency
of 220 MHz, the average power consumption of the asyn-
chronous circuitry is approximately 280 µW. As we will
show, the maximum throughput limits the frequency of the

input signal. If desired, transistors can be resized for greater
performance (higher throughput, smaller latency) at the ex-
pense of higher power consumption. However, 220 MHz is
sufficient to meet our design requirements.

For a full swing signal, the maximum number of cross-
ings that can be correctly interpreted by our LCF-ADC is
determined by the signal bandwidth (BW) and the maxi-
mum throughput of the asynchronous circuitry (fmax):

BW · number of events
cycle

≤ fmax

Where the ’number of events’ represents the number of
crossings, i.e. the number of requests issued to the asyn-
chronous processing element by the digital trigger.

If we assume a full swing periodic input signal with 2n
crossings in one period (like a triangular wave or a sinu-
soid), the equation becomes:

BW · 2n ≤ fmax

Thus, with fmax for minimal power consumption at
around 220MHz, the maximum number of levels that can
be correctly interpreted is:

n ≤ 110
BW

with BW as the bandwidth of the input analog signal in
MHz.

According to the above relationship, the maximum num-
ber of reference levels that can still be properly interpreted
by the converter with a full swing input signal of 1 MHz is
110 levels, which corresponds to a 6 bit converter. If higher
precision in terms of the number of bits is desired, the speed
of the asynchronous circuitry has to be increased.

In our simulations, the LCF-ADC was optimized for a 5
MHz full swing input signal. In order to achieve this band-
width and still have a short conversion time of the sample,
the bias voltage of the comparators was set to the value of
0.25 V. The delays in the logic that control the pass gate
and the comparator power were implemented in the follow-
ing way. The comparator power-off delay was implemented
by two minimally sized inverters, because the required de-
lay there is very short (just enough to disconnect the trans-
mission gate and latch the correct value). However, the de-
lay that controls the NMOS voltage and PMOS voltage
signals and allows the transmission gate to conduct, needs
to be much longer. Once the power of the converter is on,
sufficient time has to be given to the comparator in order
for its output to settle to the correct value. This delay was
implemented by an RC network. The delay at the chosen
bias voltage is approximately 3 ns.

For all simulations a 4-bit converter (16 levels) was ex-
amined (for comparison with the current topologies, how-
ever this topology may be trivially extended to a higher-
precision ADC). The layout area of the LCF-ADC increases

linearly with the number of levels. An input sinusoid of var-
ious frequencies with full swing was used to test the LCF-
ADC. In the simulations, we have used TSMC 0.18 µm
process transistor models. The transistors were sized mini-
mally for minimal power consumption, except for the tran-
sistors in the analog comparators (in the comparators the
transistors were on the order of µm to provide better match-
ing). The RC parameters for the transmission gate delay
were chosen according to the specification above. The ca-
pacitive divider was implemented as a resistive divider for
the simulation purposes, because the circuit simulator does
not model capacitor’s physical effects. The resistor values
were maximized to decrease the power consumption, each
resistor had the value of Rdivider = 1MΩ. All the simula-
tion data is presented in the table below.

LCF-ADC Simulation Data
Signal BW Power (µW) Energy/sample (nJ)

1 kHz 34.41 34.4
100 kHz 42.48 0.42
114 kHz 43.57 0.38
160 kHz 46.84 0.29
1 MHz 114.14 0.11
5 MHz 437.81 0.087

The dynamic power of the LCF-ADC at any frequency in
the operating range is approximately linearly proportional
to the dynamic power at the reported frequencies.

At lower frequencies (less then 100 kHz) most of the
power consumption is quiescent (approximately 17 µW); it
comes from the two comparators that are constantly on (the
power consumption of the resistive divider is negligible).
Consequentially, each sample accumulates more energy at
lower frequencies than at higher frequencies. So if the LCF-
ADC is designed for low frequency operation (less than 5
MHz), the comparator bandwidth should be decreased to
match the operating frequency, which would result in a dras-
tic power consumption reduction. For low frequency opera-
tion, the comparator power consumption can be reduced to
nano-Watt range as shown by Pister, Boser and Scott in a
similar comparator implementation [26]. As the frequency
of the input signal increases, the fraction of total power con-
sumed by the resistive divider and the comparators becomes
much smaller and the energy consumed per each sample de-
creases (as seen in the table).

At a constant frequency of 5 MHz (and higher), we ob-
served that turning the comparators off did not result in ma-
jor reduction in power consumption. We found that aver-
age power is decreased, but only by a factor of 1.23. Thus,
at higher operating frequencies, it is simpler to just leave
all the comparators on and eliminate the circuits associated
with sleep logic. However, for our application, the com-
parator power control circuits are important as we expect

the ADC to be idle for significant periods of time.
Renaudin came up with a different topology for an asyn-

chronous ADC. He has compared his A-ADC to the con-
ventional synchronous ADCs [2]. The comparison (using
his figure of merit) shows that his A-ADC is superior to all
the previous implementations. Here we present the com-
parison of our ADC to Renaudin’s ADC, however the con-
cept of SNR is not discussed since were are not reconstruct-
ing the signal, and in our case the conventional SNR ex-
pressions are not applicable. Since the signal is not re-
constructed in our case we don’t make a direct compari-
son between synchronous ADCs and LCF-ADC. The power
consumption of an asynchronous level-crossing ADC de-
signed using a successive-approximation topology by Re-
naudin et al. (A-ADC) depends on the value of the up-
down counter (from 0.898 mW to 1.603 mW in the idle
mode) [2]. In our case the power consumption is always
the same (at constant frequency input signal) and it is much
lower than the power of the A-ADC. Our average dynamic
power consumption is also significantly lower—the power
consumed by the A-ADC is 1.716 mW. The maximum re-
ported input signal bandwidth for the A-ADC is 114 kHz
(hardware resolution is 4 bits). Our ADC simulations were
performed with varying signal bandwidth (up to 5 MHz)
with 4 bits of hardware resolution as well, and we use sig-
nificantly less power than the A-ADC over the entire range.
The A-ADC, however, was designed in a different fabri-
cation technology (0.25 µm); however, a more recent ver-
sion of the same architecture in 0.12 µm CMOS shows a
maximum bandwidth of 160 kHz, and a power consump-
tion of 180 µW, even though their results correspond to a
better fabrication technology [1]. An implementation sim-
ilar to Renaudin’s A-ADC was presented by Shepard et
al. [14, 15]; the power consumption was in the milli-Watt
range – higher then in Renaudin’s A-ADC. Lower power
consumption in our ADC can be attributed to the architec-
ture of the LCF-ADC, and the representation of the output.
Note that associating a timestamp with the output would
only require an additional counter, which would not require
significant additional power [2] (approximately 15 µW).
However, the data presented by Renaudin [1] is a result of
measurements, and all the data presented in this paper is a
result of simulations and will be confirmed after the LCF-
ADC is fabricated.

6 Conclusions and Future Work

In this paper, we have described a new architecture for
asynchronous analog-to-digital conversion. The configura-
tion that was presented resembles a flash ADC, but uses
completely different digital processing circuits. In con-
trast with a flash ADC that has all its comparators active,
the LCF-ADC proposed here only has a fixed number (2)

of active comparators regardless of the hardware precision
of the ADC. Our design showed significant reduction in
power consumption compared to previously designed level-
crossing asynchronous ADCs.

Our LCF-ADC can operate in the MHz regime (opti-
mized for full swing input signals of 5 MHz frequency). It
can also work at much higher frequencies with appropriate
transistor sizing at the cost of higher power consumption.
The architecture also minimizes the transmission bandwidth
by outputting only the increments or decrements of the in-
put signal from the previous sample and not the complete
sample value (differential encoding). LCF-ADC enables
the designers to perform further asynchronous signal pro-
cessing (triggering, data collection and analysis) on an im-
plicit representation of the input signal as a non-uniform in
time sequence of bits. The applications of our LCF-ADC
include embedded sensing systems, such as environmental
monitoring applications and human body implants.

Future work could examine further reduction in power
consumption of the comparators. We are also interested in
the design of circuits that operate directly on the implicit
signal representation to perform standard signal processing
operations.

Acknowledgments. We would like to thank Yannis Tsividis
for discussions on analog circuits and theoretical aspects
of continuous time analog-to-digital conversion, and Anna
Scaglione for discussions on non-uniform sampling theory.
This work was supported in part by the NSF under grants
ITR 0428427 and NeTS 0435190.

A. Summary of CHP Notation

The CHP notation we use is based on Hoare’s CSP [6].
A full description of CHP and its semantics can be found
in [21]. What follows is a short and informal description.

• Assignment: a := b. This statement means “assign
the value of b to a .” We also write a↑ for a := true,
and a↓ for a := false .

• Selection: [G1 → S1 [] ... []Gn → Sn], where Gi’s
are boolean expressions (guards) and Si’s are program
parts. The execution of this command corresponds to
waiting until one of the guards is true, and then exe-
cuting one of the statements with a true guard. The
notation [G] is short-hand for [G → skip], and de-
notes waiting for the predicate G to become true. If the
guards are not mutually exclusive, we use the vertical
bar “|” instead of “[].”

• Repetition: *[G1 → S1 [] ... [] Gn → Sn]. The
execution of this command corresponds to choosing

one of the true guards and executing the correspond-
ing statement, repeating this until all guards evalu-
ate to false . The notation *[S] is short-hand for
*[true → S].

• Send: X !e means send the value of e over channel X .

• Receive: Y ?v means receive a value over channel Y
and store it in variable v .

• Probe: The boolean expression X is true iff a com-
munication over channel X can complete without sus-
pending.

• Sequential Composition: S ;T

• Parallel Composition: S ‖ T or S ,T .

References

[1] E. Allier, J. Goulier, G. Sicard, A. Dezzani, E. Andre, and
M. Renaudin. A 120nm low power asynchronous adc. In
Proceedings of ISLPED 2005, August 2005.

[2] E. Allier, G. Sicard, L. Fesquet, and M. Renaudin. A new
class of asynchronous A/D converters based on time quanti-
zation. In Proceedings of the 9th Annual International Sym-
posium on Asynchronous Circuits and Systems, pages 196–
205, May 2003.

[3] F. Beutler. Error-free recovery of signals from irregularly
spaced samples. SIAM Review, 8(3), 1966.

[4] V. N. Ekanayake, C. Kelly IV, and R. Manohar. Bitsnap:
Dynamic significance compression for a low-energy sensor
network asynchronous processor. In Proceedings of the 11th
IEEE International Symposium on Asynchronous Circuits
and Systems, pages 144–154, March 14-16 2005.

[5] R. Gregorian. Introduction to CMOS Op-Amps and Com-
parators. John Wiley & Sons, 1999.

[6] C. A. R. Hoare. Communicating sequential processes. Com-
munications of the ACM, 21(8):666–677, 1978.

[7] Yao-Win Hong, Anna Scaglione, and Rajit Manohar. Dense
sensor networks are also energy-efficient: When “more” is
“less”. In Proceedings of MILCOM 2005, 2005.

[8] H. Inose, T. Aoki, and K. Watanabe. Asynchronous delta
modulation system. Electronics Letters, 2:95–96, 1966.

[9] P.G.A. Jespers. Integrated Converters, D to A and A to D
Architectures, Analysis and Simulation. Oxford University
Press, 2001.

[10] B. Kedem. Spectral analysis and discrimination by zero-
crossings. Proceedings of the IEEE, 74(11):1477–1493,
November 1986.

[11] B. Kedem. Time Series Analysis by Higher Order Crossings.
IEEE Press, 1994.

[12] D. Kinnement and A. Yakovlev. Low power, low noise mi-
cropipelined flash A-D converter. IEEE Proceedings on Cir-
cuits Devices Systems, 146(5), 1999.

[13] D. Kinnement, A. Yakovlev, and B. Gao. Synchronous and
asynchronous A/D conversion. IEEE Transactions on VLSI
Systems, 9(2), 2000.

[14] Y. W. Li, K. L. Shepard, and Y. P. Tsividis. Continuous-
time digital signal processors. In Proceedings of the 11th
Annual International Symposium on Asynchronous Circuits
and Systems, New York City, USA, March 14-16 2005.

[15] Y. W. Li, K. L. Shepard, and Y. P. Tsividis. A continuous-
time programmable digital fir filter. To be published in Jour-
nal of Solid-State Circuits, 2005.

[16] B.F. Logan. Information in the zero crossings of bandpass
signals. Bell Systems Technical Journal, 56(4):487–510,
April 1977.

[17] Rajit Manohar. Asynchronous VLSI systems. Class Notes
for ECE 574 at Cornell University, 1999.

[18] J. Mark and T. Todd. A nonuniform sampling approach to
data compression. IEEE Transactions on Communications,
COM-29(4), 1981.

[19] Alain J. Martin. Compiling communicating processes into
delay-insensitive VLSI circuits. Distributed Computing,
1(4), 1986.

[20] Alain J. Martin. The limitations to delay-insensitivity in
asynchronous circuits. In William J. Dally, editor, Proceed-
ings of the 6th Conference on Advanced Research in VLSI,
pages 263–278. MIT Press, 1990.

[21] Alain J. Martin. Programming in VLSI: From communicat-
ing processes to delay-insensitive circuits. In C. A. R. Hoare,
editor, Developments in Concurrency and Communication,
UT Year of Programming Series, pages 1–64. Addison-
Wesley, 1990.

[22] A. Oppenheim, A. Wilsky, and I. Young. Signals and Sys-
tems. Prentice-Hall, 1995.

[23] S.O. Rice. Statistical properties of a sine wave plus random
noise. Bell Systems Technical Journal, 27:109–157, January
1948.

[24] J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes. A
0.5V, 1W successive approximation ADC. In ESSCIRC pro-
ceedings, Firenze, Italy, September 24-26 2002.

[25] N. Sayiner, H. Sorensen, and T. Viswanathan. A level-
crossing sampling scheme for A/D conversion. IEEE Trans-
actions on Circuits and Systems II, 43(4), 1996.

[26] M. Scott, B. Boser, and K. Pister. An ultra low-power ADC
for distributed sensor networks. In ESSCIRC proceedings,
Firenze, Italy, September 24-26 2002.

[27] Y. P. Tsividis. Digital signal processing in continuous time:
a possibility for avoiding aliasing and reducing quantization
error. In Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, May 17-21 2004.

FURTHER READING

Click any one of the following links to be taken to a website which contains
the following documents.

The following are some recent examples of Asynchronous ADC activity off the web.

6 bit Asynchronous December 2006
Asynchronous ADC In CAD Mentor Graphics
Asynchronous Data Processing System
ASYNCHRONOUS PARALLEL RESISTORLESS ADC
Flash Asynchronous Analog-to-Digital Converter
Novel Asynchronous ADC Architecture
LEVEL BASED SAMPLING FOR ENERGY CONSERVATION IN LARGE NETWORKS
A Level-Crossing Flash Asynchronous Analog-to-Digital Converter
Weight functions for signal reconstruction based on level crossings
Adaptive Rate Filtering Technique Based on the Level Crossing Sampling
Adaptive Level–Crossing Sampling Based DSP Systems
A 0.8 V Asynchronous ADC for Energy Constrained Sensing Applications
Spline-based signal reconstruction algorithm from multiple level crossing samples
A New Class of Asynchronous Analog-to-Digital Converters
Effects of time quantization and noise in level crossing sampling stabilization

Here is some more background information on Analog to Digital converters.

A 1-GS/s 6-bit 6.7-mW ADC
A Study of Folding and Interpolating ADC
Folding_ADCs_Tutorials
high speed ADC design
Investigation of a Parallel Resistorless ADC

Here are some patents on the subject.

4,291,299_Analog_to_digital_converter_using_timed
4,352,999_Zero_crossing_comparators_with_threshold
4,544,914_Asynchronously_controllable_successive_approximation
4,558,348_Digital_video_signal_processing_system_using
5,001,364_Threshold_crossing_detector
5,315,284_Asynchronous_digital_threshold_detector_
5,945,934_Tracking_analog_to_digital_converter
6,020,840_Method_and_apparatus_for_representing_waveform
6,492,929_Analogue_to_digital_converter_and_method
6,501,412_Analog_to_digital_converter_including_a_quantizers
6,667,707_Analog_to_digital_converter_with_asynchronous_ability
6,720,901_Interpolation_circuit_having_a_conversio2
6,850,180_SelfTimed_ADC
6,965,338_Cascade_A_D_converter
7,133,791_Two_mean_level_crossing_time_interval

11.19.10_1.20PM
dsauersanjose@aol.com
Don Sauer

http://www.idea2ic.com/Simple_Asynchronous_ADC/A%20simple%20Asynchronous%20ADC.html

