Octave Quick Reference Octave Version 3.0.0

Starting Octave

octave	start interactive Octave session
octave file	run Octave on commands in file
octave --eval	code
octave	Evaluate code using Octave

Stopping Octave

quit or exit	exit Octave
INTERRUPT	(e.g. C-c) terminate current command
	and return to top-level prompt

Getting Help
help
help command
doc
doc command
$\begin{array}{ll}\text { doc command } & \text { search for command in Octave man } \\ \text { lookfor str } & \text { search for command based on str }\end{array}$
briefly describe command
use Info to browse Octave manual

Motion in Info
 SPC or C-v scroll forward one screenful DEL or M-v scroll backward one screenful

Node Selection in Info

n	select the next node
p	select the previous node
u	select the 'up' node
t	select the 'top' node
d	select the directory node
$<$	select the first node in the current file
$>$	select the last node in the current file
g	reads the name of a node and selects it
$\mathrm{C}-\mathrm{x} \mathrm{k}$	kills the current node

Searching in Info

s	search for a string
C-s	search forward incrementally
C-r	search backward incrementally
i	search index \& go to corresponding node

Command-Line Cursor Motion

C-b
C-f
C-a
C-e
M-f
M-b
$C-1$
move back one character
move forward one character
move to the start of the line
move to the end of the line
move forward a word
move backward a word
clear screen, reprinting current line at top

Inserting or Changing Text

M-TAB	insert a tab character
DEL	delete character to the left of the cursor
C-d	delete character under the cursor
C-v	add the next character verbatim
C-t	transpose characters at the point
M-t	transpose words at the point

[] surround optional arguments ... show one or more arguments

Killing and Yanking

$\mathrm{C}-\mathrm{y}$ $\mathrm{M}-\mathrm{d}$
 -d

M-y

yank the most recently killed text

kill to the end of the line yill to the end of the current word kill the word behind the cursor rotate the kill ring and yank the new top

Command Completion and History

TAB
RET
C-p
C - n
$\mathrm{C}-\mathrm{n}$
$\mathrm{M}-<$
$\mathrm{M}->$
M->
C-r
C-s
complete a command or variable name list possible completions enter the current line
move 'up' through the history list move 'down' through the history list move to the first line in the history move to the last line in the history search backward in the history list search forward in the history list
history $[-\mathrm{q}][N] \quad$ list N previous history lines, omitting history numbers if -q
history $-\mathrm{w}[f i l e] \quad$ write history to file (~/.octave_hist if no file argument)
history $-\mathrm{r}[$ file $]$ read history from file (~/.octave_hist if no file argument)
edithistory lines edit and then run previous commands from the history list
run_history lines run previous commands from the history list

$$
[\mathrm{beg}][\mathrm{end}]
$$

Specify the first and last history commands to edit or run.
If beg is greater than end, reverse the list of commands before editing. If end is omitted, select commands from beg to the end of the history list. If both arguments are omitted, edit the previous item in the history list.

Shell Commands

cd dir	change working directory to dir
pwd	print working directory
ls [options]	print directory listing
getenv (string)	return value of named environment variable
system (cmd)	execute arbitrary shell command string

Matrices

Square brackets delimit literal matrices. Commas separate elements on the same row. Semicolons separate rows. Commas may be replaced by spaces, and semicolons may be replaced by one or more newlines. Elements of a matrix may be arbitrary expressions, assuming all the dimensions agree.

$$
\begin{array}{ll}
{[x, y, \ldots]} & \text { enter a row vector } \\
{[x ; y ; \ldots]} & \text { enter a column vector } \\
{[w, x ; y, z]} & \text { enter a } 2 \times 2 \text { matrix }
\end{array}
$$

Multi-dimensional Arrays

Multi-dimensional arrays may be created with the cat or reshape commands from two-dimensional sub-matrices
squeeze (arr) remove singleton dimensions of the array ndims (arr) number of dimensions in the array. permute ($a r r, p$) permute the dimensions of an array
ipermute ($a r r, p$) array inverse permutation.
shiftdim (arr,s) rotate the array dimensions circshift (arr, s) rotate the array elements.

Sparse Matrices

sparse (...) create a sparse matrix.
speye (n) create sparse identify matrix.
sprand (n, m, d) sparse rand matrix of density d.
spdiags (...) sparse generalization of diag.
nnz (s) No. non-zero elements in sparse matrix.

Ranges

base : limit
base : incr : limit
Specify a range of values beginning with base with no elements greater than limit. If it is omitted, the default value of incr is 1 . Negative increments are permitted.

Strings and Common Escape Sequences

A string constant consists of a sequence of characters enclosed in either double-quote or single-quote marks. Strings in double-quotes allow the use of the escape sequences below.

$\ \backslash$	a literal backslash
$\backslash "$	a literal double-quote character
$\backslash \prime$	a literal single-quote character
\n	newline, ASCII code 10
\t	horizontal tab, ASCII code 9

Index Expressions

var (idx) select elements of a vector
$\operatorname{var}(i d x 1, i d x 2)$ select elements of a matrix
scalar
vector
elements of vector
select rows (columns) corresponding to the elements of range
select all rows (columns)

Global and Persistent Variables

global var1... Declare variables global.
global var1 = val Declare variable global. Set intial value. persistent var1 Declare a variable as static to a function. persistent var1 = Declare a variable as static to a function val and set its initial value
Global variables may be accessed inside the body of a function without having to be passed in the function parameter list provided they are declared global when used.

Selected Built-in Functions

EDITOR	editor to use with edit_history
Inf, NaN	IEEE infinity, NaN

NA
PAGER
ans
eps
pi
1i
realmax
realmin
EEE infinity, NaN
Missing value
program to use to paginate output
last result not explicitly assigned
machine precision
π

$\sqrt{-1}$

maximum representable value
minimum representable value

Copyright 1996, 1997, 2007 John W. Eaton Permissions on back

Assignment Expressions

var $=\operatorname{expr} \quad$ assign expression to variable $\operatorname{var}(i d x)=\operatorname{expr} \quad$ assign expression to indexed variable $\operatorname{var}(i d x)=[]$ assign expression to indexed
delete the indexed elements. $\operatorname{var}\{i d x\}=\operatorname{expr}$
assign elements of a cell array

Arithmetic and Increment Operators

$x+y$
$x-y$
$x * y$
$x \cdot * y$
x / y
$x . / y$
$x \backslash y$
$x . \backslash y$
$x _y$
$x \cdot^{\prime} y$
$-x$
$+x$
x,
$x \cdot$,
$++x \quad(--x)$
$x++\quad(x--)$

addition

subtraction
matrix multiplication
element by element multiplication
right division, conceptually equivalent to (inverse (y^{\prime}) * x')'
element by element right division left division, conceptually equivalent to inverse (x) * y
element by element left division power operator
element by element power operator negation
unary plus (a no-op)
complex conjugate transpose transpose
increment (decrement), return new value increment (decrement), return old value

Comparison and Boolean Operators

These operators work on an element-by-element basis. Both arguments are always evaluated.

$x<y$	true if x is less than y
$x<=y$	true if x is less than or equal to y
$x==y$	true if x is equal to y
$x>=y$	true if x is greater than or equal to y
$x>y$	true if x is greater than y
$x!=y$	true if x is not equal to y
$x \& y$	true if both x and y are true
$x \mid y$	true if at least one of x or y is true
$!$ bool	true if bool is false

Short-circuit Boolean Operators

Operators evaluate left-to-right. Operands are only evaluated if necessary, stopping once overall truth value can be determined. Operands are converted to scalars using the all function.
$x \& \& y \quad$ true if both x and y are true
$x \| y \quad$ true if at least one of x or y is true

Operator Precedence

Table of Octave operators, in order of increasing precedence.

; ,	statement separators assignment, groups left to right
11 \&\&	logical "or" and "and"
\&	element-wise "or" and "and"
<= == >= > ! $=$	relational operators colon
+ -	addition and subtraction
* /	
, .* ./ .	multiplication and division transpose
+ - ++ -- !	unary minus, increment, logical "not" exponentiation

Paths and Packages

path
pathdef
addpath (dir)
EXEC_PATH
pkg list
pkg load pack
display the current Octave cunction path. display the default path.
add a directory to the path.
manipulate the Octave executable path.
display installed packages.

Cells and Structures

var. field $=\ldots$
$\operatorname{var}\{i d x\}=\ldots$
set a field of a structure.
fieldnames $(s) \quad$ returns the fields of a structure

Statements

for identifier $=$ expr stmt-list endfor
Execute stmt-list once for each column of expr. The
variable identifier is set to the value of the current column
during each iteration.
while (condition) stmt-list endwhile
Execute stmt-list while condition is true.

break
 return

continue go to beginning of innermost loop

$$
\begin{aligned}
& \text { go to beginning of innermost loop } \\
& \text { return to calling function }
\end{aligned}
$$

if (condition) if-body [else else-body] endif
Execute if-body if condition is true, otherwise execute elsebody.
if (condition) if-body [elseif (condition) elseif-body] endif Execute if-body if condition is true, otherwise execute the elseif-body corresponding to the first elseif condition that is true, otherwise execute else-body.
Any number of elseif clauses may appear in an if statement.
unwind_protect body unwind_protect_cleanup cleanup end Execute body. Execute cleanup no matter how control exits body.
try body catch cleanup end
Execute body. Execute cleanup if body fails.

Strings

strcmp (s, t)
strcat (s, t, \ldots)
compare strings
egexp (str,,\ldots)
concatenate strings
egexp (str, pat) strings matching regular expression regexprep (str, pat, rep) Match and replace sub-strings

Defining Functions

function $[$ ret-list $]$ function-name $[$ (arg-list) $]$ function-body
endfunction
ret-list may be a single identifier or a comma-separated list of identifiers delimited by square-brackets.
arg-list is a comma-separated list of identifiers and may be empty.

Function Handles

@func
Define a function handle to func.
@(var1, ...) expr Define an anonymous function handle str2func (str) Create a function handle from a string
functions (handle) Return information about a function handle.
func2str (handle) Return a string representation of a function handle.
handle (arg1, ...) Evaluate a function handle.
feval (func, arg1, Evaluate a function handle or string,
...) passing remaining args to func
Anonymous function handles take a copy of the variables in the current workspace.

Miscellaneous Functions

eval (str)
evaluate str as a command
error (message) print message and return to top level warning (message) print a warning message
clear pattern clear variables matching pattern exist (str) check existence of variable or function who, whos list current variables
whos var details of the varibale var

Basic Matrix Manipulations

rows (a)
columns (a)
all (a)
any (a)

check if all elements of a nonzero check if any elements of a nonzero
find (a)
sort (a)
sum (a)
prod (a)
min (args)
\max (args)
rem (x, y)
return indices of nonzero elements order elements in each column of a sum elements in columns of a product of elements in columns of a find minimum values
(a, m, n) reformat a to be m by n
$\operatorname{diag}(v, k) \quad$ create diagonal matrices
linspace (b, l, n) create vector of linearly-spaced elements
logspace (b, l, n) create vector of log-spaced elements
eye $(n, m) \quad$ create n by m identity matrix
ones (n, m) create n by m matrix of ones zeros (n, m) create n by m matrix of zeros rand $(n, m) \quad$ create n by m matrix of random values

Linear Algebra

chol (a) Cholesky factorization
$\operatorname{det}(a) \quad$ compute the determinant of a matrix
eig (a)
expm (a)
hess (a)
inverse (a)
norm (a, p)
pinv (a)
qr (a)
rank (a)
sprank (a)
schur (a)
svd (a)
syl (a, b, c)
eigenvalues and eigenvectors compute the exponential of a matrix compute Hessenberg decomposition
invert a square matrix
compute the p-norm of a matrix
compute pseudoinverse of a
compute the QR factorization of a matrix matrix rank
structrual matrix rank
Schur decomposition of a matrix
singular value decomposition
solve the Sylvester equation

Equations, ODEs, DAEs, Quadrature

*fsolve solve nonlinear algebraic equations
*lsode
*dassl
*quad integrate nonlinear ODEs integrate nonlinear ODEs
integrate nonlinear functions
perror ($n m$, code) for functions that return numeric codes print error message for named function and given error code

* See the on-line or printed manual for the complete list of arguments for these functions.

Signal Processing

fft (a)	Fast Fourier Transform using FFTW
ifft (a)	inverse FFT using FFTW
freqz $($ args $)$	FIR filter frequency response
filter (a, b, x)	filter by transfer function
conv (a, b)	convolve two vectors
hamming (n)	return Hamming window coefficents
hanning (n)	return Hanning window coefficents

Image Processing

colormap (map) set the current colormap
gray2ind (i, n)
image (img, zoom)
imagesc (img, zoom)
imshow (img, map)
imshow (i, n)
imshow (r, g, b)
ind2gray (img, map)
ind2rgb (img, map)
loadimage (file)
rgb2ind (r, g, b) convert gray scale to Octave image display an Octave image matrix display scaled matrix as image display Octave image display gray scale image display RGB image convert Octave image to gray scale convert indexed image to RGB load an image file convert RGB to Octave image saveimage (file, img, fmt, map) save a matrix to file

C-style Input and Output

fopen (name, mode) open file name
fclose (file) close file
printf (fmt, ...) formatted output to stdout
fprintf (file, fmt, ...) formatted output to file
sprintf (fmt, ...) formatted output to string
scanf ($f m t$)
fscanf (file, fmt)
sscanf (str, fmt)
fgets (file, len)
fflush (file)
ftell (file)
frewind (file)
freport
fread (file, size, prec) fwrite (file, size, prec) feof (file) formatted input from stdin formatted input from file formatted input from string read len characters from file flush pending output to file return file pointer position move file pointer to beginning print a info for open files read binary data files write binary data files determine if pointer is at EOF

A file may be referenced either by name or by the number returned from fopen. Three files are preconnected when Octave starts: stdin, stdout, and stderr.

Other Input and Output functions

save file var...	save variables in file
load file	load variables from file
disp (var)	display value of var to screen

Polynomials

compan (p)
conv (a, b)
deconv (a, b)
poly (a)
polyderiv (p)
polyreduce (p)
polyval (p, x)
polyvalm (p, x)
roots (p)
residue (a, b)
companion matrix
convolution
deconvolve two vectors
create polynomial from a matrix
derivative of polynomial
integral of polynomial
value of polynomial at x
value of polynomial at x
polynomial roots
partial fraction expansion of ratio a / b

Statistics

corrcoef (x, y)
$\operatorname{cov}(x, y)$
mean (a)
median (a)
std (a)
var (a)
correlation coefficient
covariance
mean value
median value
standard deviation
variance

Plotting Functions

plot (args) 2D plot with linear axe
plot3 (args) 3D plot with linear axes
line (args)
patch (args)
semilogx (args)
semilogy (args)
loglog (args)
bar (args)
stairs (x, y)
stem (x, it y)
hist (y, x)
contour (x, y, z
title (string)
axis (limits)
xlabel (string)
label (string)
zlabel (string)
text (x, y, str)
legend (string)
grid [on|off]
hold [on|off]
ishold
$\operatorname{mesh}(x, y, z)$
meshgrid (x, y)
2D or 3D line
2D patch
2D plot with logarithmic x-axis
2D plot with logarithmic y-axis
2D plot with logarithmic axes
plot bar charts
plot stairsteps
plot a stem graph
plot histograms
contour plot
set plot title
set axis ranges
set x -axis label
set y-axis label
set z-axis label
add text to a plot
set label in plot key
set grid state
set hold state
eturn 1 if hold is on, 0 otherwise
plot 3D surface
create mesh coordinate matrices

Edition 2.0 for Octave Version 3.0.0. Copyright 1996, 2007,
John W. Eaton (jwe@bevo.che.wisc.edu). The author assumes no
responsibility for any errors on this card
This card may be freely distributed under the terms of the GNU General Public License.
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Macros for this card by Roland Pesch (pesch@cygnus.com),
originally for the GDB reference card
Octave itself is free software; you are welcome to distribute copies
f it under the terms of the GNU General Public License. There is
absolutely no warranty for Octave.

