OUTPUT_REQUIREMENTS


```
* ====================END====
http://www.fileformat.info/convert/doc/pdf2txt.htm
```

The output stage introduces a number of requirements. First off, the actual outputs are collectors of transistor. Then there is a need to have a lot of input to output current gain. Then there is this need to work down to the same voltage requirements as the input stage. That is to work down to a supply voltage of 2 diodes and two sats. Then there is the low supply current requirement. Then there is high bandwidth requirement. Then there is the unity gain stability with a 200pF cap load requirement.

*
The bottom NPN half of the output stage is shown above. The top PNP half is an exact mirror image of the NPN half and is represented by B_PNPOUT. The current gain supplied by QN4, QN3, and QP1. If VREF is at half supply, then QP3, QP2, QN3 and QN4 can work down to two diodes and two sats.

For supply rejection reasons, it is not desirable that VREF should be modulated by vCC. The circuit above shows a simplified version used in the LM6142.

There is an unwritten spec that an Op Amp should have a "graceful death" when the supply voltage is lowered. Ideally what this means is the the Op Amps should still function but progressively degrade in performance as the supply voltage is lowered. Having an Op Amp go crazy at low voltages does not go unfixed.

The LM6142 was originally designed for the 5 V and 12 V market. Below 5 volts, it was OK to start graceful death at the output stage. While the circuit below is not exact, it shows the details under consideration.

Above 5 volts a current source biases up a diode multiplier to provide at stable VREF. The plot of VP5C and Vref versus VCC shown below somewhat resembles the LM6142. Transistor QP5 is set up to saturate such that a 2.4 V supply voltage generates a VREF which is at 1.2 V .

This feature worked so well that it was found that the part was solid at both $2.4 V o l t s$ and 24 volts. So the data sheet specs were extended to those supply specs as well.

