* dsauersanjose@aol.com 12/17/08

OPTIONS method=trap

| VIN | INP | 0 | DC | AC 1m | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| QP1 | VP1C | INP | VPNP | PNPV | 1 |
| QP2 | VP2C | OUT | VPNP | PNPV | 1 |
| RP1 | VP1C | 0 | $5 K$ | | |
| RP2 | VP2C | 0 | $5 K$ | | |
| QN1 | VN1C | INP | VNPN | NPNV | 1 |
| QN2 | VN2C | OUT | VNPN | NPNV | 1 |
| RN1 | VCC | VN1C | $5 K$ | | |
| RN2 | VCC | VN2C | $5 K$ | | |

To Covert PDF to plain text click below

The LM6142 is a current starved design. The idea was to design a 10 MHz unity gain stable Op Amp which drew less than 1mA per amplifier using a process very close to the standard analog process.

The main challenge was the size of transistors. The process was a 30volt process. The dimensions were such that stray capacitance was in terms of pico farads instead of femto farads.

Perhaps the dominate challenge was the emitter base stray capacitance which was around 0.5 pF . A transistor will have a junction impedance of 26 Kohm at 1 uA of emitter current. That puts ftau at 10 MHz . The problem is that a large number of such transistors running minimum current need to be put into the signal path. Each transistor contributes time delay to the signal and the goal is to have the total overall time delay small enough that there is less that 180 of phase shift at 10 MHz in order for the Op Amp to be unity gain stable.

The simulation above is looking at the phase shift due to the dual input turn around just modeling stray capacitance. The unity gain cross is around 15Mhz. At that frequency there may be a little more than 20degrees of phase margin.

The input transistors are already driving the dual input turn around in a common base mode configuration anyway. This is a faster way to drive transistors. Adding capacitor C1 will lower the impedance at the base of QN6 and adding $C 2$ as well effectively kills the high frequency signal path of all other transistors except QN6. High frequency signal has only one path and that is to common base drive QN6 to the output.

The result is a bit counter intuitive looking at the resulting gain phase plot. Both gain and phase delay are reduced at higher frequencies. For a normal lowpass, a gain decrease normally results in a phase delay increase. What is happening in the circuit is half of the dual turn around's signal path which has the most transistors and therefore the most delay has been removed at the higher frequencies. This is the "shorten the signal path" technique.

