
Contents Specifications Functions Used Operations Software

Functions Used
Serial Data Transmission in Asynchronous Mode

1. In this task example, a Serial Communication Interface (SCI) is used for serial data transmission
in asynchronous mode.Figure 2 shows a block diagram of serial data transmission in
asynchronous mode which is described below.

In asynchronous mode, serial data communication is performed asynchronously, with
synchronization provided character by character.

 Serial data can by communicated with standard asynchronous communication LSIs such
as Universal Asynchronous Receiver/Transmitter (UART) and Asynchronous
Communication Interface Adapter (ACIA).

A multi-processor communication function is provided to enable serial data
communications with multiple processors.

The transfer format can be selected from 16 transfer format types.

The transmitter and receiver are independent, enabling simultaneous transmission and
reception. Both the transmitter and receiver have a double-buffer architecture to achieve
continuous transmission and reception.

Any desired bit rate can be selected using the on-chip baud rate generator.

The transmit/receive clock source can be selected from internal or external clocks.

There are six interrupt factors, namely, transmit complete, transmit data empty, receive
data full, overrun error, framing error and parity error.

The Receive Shift Register (RSR) is a register to receive serial data. Serial data input
from RXD32 pin is set in RSR in the receiving order that is starting from the LSB (Bit 0),
and is converted into parallel data. When one-byte data is received, it is transferred
automatically to RDR. RSR cannot be read from or written to directly by the CPU.

The Receive Data Register (RDR) is an 8-bit register to store received serial data.
 Receiving one-byte data, the received data is transferred from RSR to RDR to complete
receive operation. RSR is then ready to receive data. RSR and RDR have a double
buffer, enabling continuous receive operations. RDR is a receive-only register and cannot
be written to by the CPU.

The Transmission Shift Register (TSR) is a register to transmit serial data. Transmit data
is temporarily transferred from TDR to TSR and is sent to TXD32 pin starting from the
LSB (Bit 0) for serial data transmission. Transmitting one-byte data, the next transmit
data is transferred automatically from TDR to TSR to start transmitting. If data is not

written in TDR (1 is set in TDRE), data is not transferred from TDR to TSR. TSR cannot
be read from or written to directly by the CPU.

The Transmit Data Register (TDR) is an 8-bit register to store transmit data. Detecting
that TSR is "empty", transmit data written in TDR is transferred to TSR to start serial data
transmission. By writing next transmit data in TDR during TSR serial data transmission,
continuous transmission is possible. TDR can always be read from or written to by the
CPU.

The Serial Mode Register (SMR) is an 8-bit register for setting of a serial data tranfer
format and selecting a clock source for the baud rate generator. SMR can always be read
from or written to by the CPU.

The Serial Control Register 3 (SCR3) is an 8-bit register for selecting transmit/receive
operation, clock output in asynchronous mode, interrupt request enable/disable, and
transmit/receive clock source. SCR3 can always be read from or written to by the CPU.
The Serial Port Control Register (SPCR) is an 8-bit register to control P42/TXD32 pin. In
this task example, P42/TXD32 pin is set as TXD32 output pin, and the input data of
 TXD32 pin is set not to be inverted.

The Serial Status Register (SSR) is an 8-bit register with on-chip status flags indicating
 operation status of SCI3, and multi-processor bits. SSR can always be read from or
written to by the CPU, except 1 cannot be written in TDRE, RDRF, OER, PER or FER. 1
must be read in advance to clear them by writing 0. TEND and MPBR are for read only
and data cannot be written in them.

The Bit Rate Register (BRR) is an 8-bit register to set a transmit/receive bit rate matched
to the operating clock for baud rate generator selected by CKS0 and CKS1 in SMR. BRR
can always be read from or written to by the CPU.

Table 1 shows an example of BRR setting in asynchronous mode. Table 1 shows values
in the active mode when OSC is 10 MHz.

Table 1 Example of BRR Settings for Bit Rates (Asynchronous Mode)

R Bit Rate (Bps) 110 150 200 250 1200 2400 31250

n 2 2 2 2 0 0 0

N 88 64 48 38 129 64 4

Error(%) -0.25 +0.16 -0.35 +0.16 +0.16 +0.16 0

Notes: 1.Set errors to be less than 1%.

2.BRR set values can be calculated as follows:

B:Bit rate (bps)

N:Set value of baud rate generator BRR (0 <= N <= 255)

OSC:Value of fOSC (MHz) = 10 MHz or subclock f w 32.768 kHz

n:Value set in CKS1 and CKS0 in SMR (0 <= n <= 3)

(See Table 2 for the relation between n and clock.)

Table 2 Relationship between n and Clock

n Clock
Set Value of SMR

CKS1 CKS0

0 ¦Õ 0 0

1 ¦Õw/4,¦Õw 0 1

2 ¦Õ/16 1 0

3 ¦Õ/64 1 1

3.The error shown in Table 1 is given by the following equation.(rounded off to two decimals)

4.When OSC is 10 MHz, the maximum bit rate (asynchronous mode) is 31250 bps, provided
n=0 and N=4 are set.

In asynchronous mode, serial communication is performed with synchronization provided
character by character, transmitting and receiving characters added with a start bit
indicating the start of communication and a stop bit indicating the end of communication.

The transmitter and receiver are independent inside SCI3 and full duplex communications
are possible. Both the transmitter and receiver have a double-buffer architecture to
achieve continuous transmission and reception. Data writing during transmission and data
reading during reception can make continuous transmission and reception possible.

Figure 3 shows data format of asynchronous communications. In asynchronous
communications, the communication line is normally maintained in the mark state
("High" level). SCI3 monitors communication line and starts serial communications when
it detects the place which has become a space ("Low" level) to serve as a start bit.

One character in communication data consists of the start bit ("Low" level), followed by
transmit/receive data (LSB first, starting from the least significant bit), parity bit ("High"
or "Low" level) and stop bit ("High" level) at the end.

In asynchronous mode, synchronization is achieved by the falling edge of the start bit
during reception. Data is sampled on the eighth clock of a frequency obtained by
multiplying 16 times the one bit period and communication data is fetched in the center of
each bit.

Figure 3 Data Format in Asynchronous Communications

SCI3 clock (SCK32) is a clock input/output pin of SCI3.

SCI3 receive data input (RXD32) is a receive data input pin of SCI3.

SCI3 transmit data output (TXD32) is a transmit data output pin of SCI3.

SCI3 interrupt factors total six, transmit complete, transmit data empty, receive data full
and three receive errors (overrun error, framing error and parity error). Common vector
address is assigned to them.

Each interrupt request can be enabled/disabled by TIE and RIE in SCR3.

If TDRE in SSR is set to 1, TXI is generated. If TEND in SSR is set to 1, TEI is
generated. These two interrupts are generated during transmission.

The initial value of TDRE in SSR is 1. Therefore, by setting TIE in SCR3 to 1 and by
enabling a transmit data empty interrupt request (TXI) before transferring transmit data to
TDR, TXI is generated even when transmit data is not ready.

The initial value of TEND in SSR is 1. Therefore, by setting TEIE in SCR3 to 1 and by
enabling a transmit end interrupt request (TEI) before transferring transmit data to TDR,
TEI is generated even when transmit data is not sent.

By processing which transfers transmit data to TDR within the interrupt handling routine,
these interrupts can be utilized effectively. To prevent these interrupt requests (TXI and
TEI), the enable bits (TIE and TEIE) interacting to these interrupt requests should be set
to 1 after transmit data has been transferred to TDR.

RXI is generated when RDRF in SSR is set to 1. ERI is generated when OER, PER or
FER is set to 1. These two interrupt requests are generated during reception.

2. Table 3 shows assignment of functions in this task example. Serial data transmission in
asynchronous mode is performed by assigning the functions as shown in Table 3.

Table 3 Assignment of Functions

Function Assignment

TSR A register to transmit serial data

TDR A register to store transmit data

SMR Sets a serial data transfer format and clock source for baud rate generator

SSR Status flags to indicate operation status of SCI3

BRR Sets transmit/receive bit rate

SCR3 Enables transmit operation and sets TXD32 output pin

TXD32 SC13 transmit data output pin

SPCR Sets TXD32 output pin

Contents Specifications Functions Used Operations Software

Built-in Peripheral Functions

8-bit Counter Count-Up by
Interval Function

Simultaneous Serial Data
Transmission and Reception

in Asynchronous Mode
Asynchronous Event Counter

LED Flickering by Clock
Time-Base Function

Multiprocessor
Communication

LCD Display with Static
Duty

Interrupt Period Setting by
Auto-Reload Timer Function

Voltage Measurement by
4-Channel A/D Converter LCD Display with 1/4 Duty

Pulse Frequency
Measurement by Event

Counter Function

Duty Pulse Output by 10-Bit
PWM Function

Oscillation Stabilization Time
Settings

Interrupt Counting by 16-Bit
Timer Counter Function

Flickering of LEDs
Connected to I/O Port

Module Standby Mode
Settings

Count of Input Pulses by
16-Bit Event Counter

Function

Count Start by External
Interrupt

Clock Operation Using Timer
F

PWM Output by Output
Compare Function

Multiple Interrupt Operation
by Internal Interrupt ¡¡

Pulse Period Measurement
by Input Capture Function

Transition to Sleep (Medium
Speed) Mode ¡¡

Watchdog Timer Transition to Sleep (High
Speed) Mode ¡¡

Serial Data Transmission in
Synchronous Mode Transition to Standby Mode ¡¡

Serial Data Reception in
Synchronous Mode Transition to Watch Mode ¡¡

Simultaneous Serial Data
Transmission and Reception

in Synchronous mode
Transition to Subsleep Mode ¡¡

Serial Data Transmission in
Asynchronous Mode Transition to Subactive Mode ¡¡

Serial Data Reception in
Asynchronous Mode

Transition to Active (Medium
Speed) Mode ¡¡

Older One For All IR Remote Serial Protocol
This protocol supposedly works for:

URC-4000 (One For All 6)
URC-5000 (One For All 12)

For newer remotes, click here.

Serial Settings

4800 baud, 1 start bit, 8 data bits, no parity, 1 stop bit, half-duplex.

DTR High, RTS Low

The active components hidden in the serial cable’s DB9 housing draw power from DTR. Before
communication, you should lower DTR and CTS: this resets the circuitry. During communication, you
must raise DTR to power the serial cable.

Wake Up Sequence

You must repeat this wake up sequence for each command you send to the remote.

To wake up the remote:

1. raise DTR (to power the serial cable)
2. send a serial BREAK for at least 50 msec (15 msec minimum, but some remotes take longer than

that, maybe even 100 msec)
3. receive a wake-up acknowlege from the remote: 0x6E
4. send a serial execute command to the remote: 0xBC
5. receive a serial execute command acknowlege: 0x6F

Once the remote’s awake, you can send any single-byte keycode to the remote. The remote will go to
sleep after execute the keycode. The remote will echo back the keycode.

If you send a macro command that issues multiple keycodes, the remote echoes back only the last
keycode.

After each command:

1. lower DTR (power down the serial cable)
2. wait 200 msec

Table of Keycodes

These keycodes are probably wrong: each new OFA model has a unique set of keycodes. If you map out
a particular unit’s keycodes, please send a list to Rob at remotes@stormloader.com to add to the codes
page.

Name Code Name Code Name Code Name Code Name Code Name Code Name C

00 6 10 20 Aux 30 Enter 40 Play 50 6

Mute 01 3 11 B/Audio 21 TV 31 41 Pause 51 Sleep 6

Vol - 02 12 Amp 22 32 42 Stop 52 F1 6

Vol + 03 13 VCR 23 CH + 33 FF 43 Display 53 6

04 C/Tuner
/Video

14 7 24 CH - 34 44 54 6

Power 05 Cable 15 4 25 35 45 F2 55 6

CD 06 8 16 1 26 36 A/B 46 Recall 56 6

Satellite07 5 17 27 Record 37 F3 47 57 6

9 08 18 28 Program38 0 48 58 6

09 2 19 A 29 F4 39 49 Rewind59 6

Home | Forums | Manuals | Infra Red | JP1 Upgrades | Setup Codes | Advanced Codes | Links

(renamed the "EIA232 Standard" in the early 1990’s)

Written by Christopher E. Strangio
Copyright © 1993-2003 by CAMI Research Inc., Lexington, Massachusetts

Send Us Your Comments . . .

Contents

What is EIA232?
Likely Problems when Using an EIA232 Interface
Pin Assignments
Cable Wiring Examples (New!)
Signal Definitions
Signal Ground and Shield
Primary Communications Channel
Secondary Communications Channel
Modem Status and Control Signals
Transmitter and Receiver Timing Signals
Channel Test Signals
Electrical Standards
Common Signal Ground
Signal Characteristics
Signal Timing
Accepted Simplifications of the Standard

Pin Description Index

References to EIA Publications

Back to CableEye® Home Page

What is EIA232?
Next Topic | TOC

In the early 1960s, a standards committee, today known as the Electronic Industries Association,
developed a common interface standard for data communications equipment. At that time, data
communications was thought to mean digital data exchange between a centrally located mainframe
computer and a remote computer terminal, or possibly between two terminals without a computer
involved. These devices were linked by telephone voice lines, and consequently required a modem at
each end for signal translation. While simple in concept, the many opportunities for data error that occur
when transmitting data through an analog channel require a relatively complex design. It was thought
that a standard was needed first to ensure reliable communication, and second to enable the

interconnection of equipment produced by different manufacturers, thereby fostering the benefits of
mass production and competition. From these ideas, the RS232 standard was born. It specified signal
voltages, signal timing, signal function, a protocol for information exchange, and mechanical
connectors.

Over the 40+ years since this standard was developed, the Electronic Industries Association published
three modifications, the most recent being the EIA232E standard introduced in 1991. Besides changing
the name from RS232 to EIA232, some signal lines were renamed and various new ones were defined,
including a shield conductor.

Likely Problems when Using an EIA232 Interface
Next Topic | Previous Topic | TOC

During this 40-year-long, rapidly evolving period in electronics, manufacturers adopted simplified
versions of this interface for applications that were impossible to envision in the 1960s. Today, virtually
all contemporary serial interfaces are EIA232-like in their signal voltages, protocols, and connectors,
whether or not a modem is involved. Because no single "simplified" standard was agreed upon,
however, many slightly different protocols and cables were created that obligingly mate with any
EIA232 connector, but are incompatible with each other. Most of the difficulties you will encounter in
EIA232 interfacing include at least one of the following:

1 - The absence or misconnection of flow control (handshaking) signals, resulting in buffer
overflow or communications lock-up.

2 - Incorrect communications function (DTE versus DCE) for the cable in use, resulting in
the reversal of the Transmit and Receive data lines as well as one or more handshaking lines.

3 - Incorrect connector gender or pin configuration, preventing cable connectors from mating
properly.

Fortunately, EIA232 driver circuitry is highly tolerant of misconnections, and will usually survive a
drive signal being connected to ground, or two drive signals connected to each other. In any case, if the
serial interface between two devices is not operating correctly, disconnect the cable joining this
equipment until the problem is isolated.

Pin Assignments
Next Topic | Previous Topic | TOC

Go to DTE Pinout (looking into the computer’s serial connector)
Go to DCE Pinout (looking into the modem’s serial connector)

If the full EIA232 standard is implemented as defined, the equipment at the far end of the connection is

named the DTE device (Data Terminal Equipment, usually a computer or terminal), has a male DB25
connector, and utilizes 22 of the 25 available pins for signals or ground. Equipment at the near end of
the connection (the telephone line interface) is named the DCE device (Data Circuit-terminating
Equipment, usually a modem), has a female DB25 connector, and utilizes the same 22 available pins for
signals and ground. The cable linking DTE and DCE devices is a parallel straight-through cable with no
cross-overs or self-connects in the connector hoods. If all devices exactly followed this standard, all
cables would be identical, and there would be no chance that an incorrectly wired cable could be used.
This drawing shows the orientation and connector types for DTE and DCE devices:

EIA232 communication function and connector types for a personal computer
and modem. DCE devices are sometimes called "Data Communications
Equipment" instead of Data Circuit-terminating Equipment.

Here is the full EIA232 signal definition for the DTE device (usually the PC). The most commonly used
signals are shown in bold.

[back to Pin Assignments description]

Copyright © 1993-2002 CAMI Research Inc.

This shows the full EIA232 signal definition for the DCE device (usually the modem). The most
commonly used signals are shown in bold.

[back to Pin Assignments description]

Copyright © 1993-2003 CAMI Research Inc.

Many of the 22 signal lines in the EIA232 standard pertain to connections where the DCE device is a
modem, and then are used only when the software protocol employs them. For any DCE device that is
not a modem, or when two DTE devices are directly linked, far fewer signal lines are necessary.

You may have noticed in the pinout drawings that there is a secondary channel which includes a
duplicate set of flow-control signals. This secondary channel provides for management of the remote
modem, enabling baud rates to be changed on the fly, retransmission to be requested if a parity error is
detected, and other control functions. This secondary channel, when used, is typically set to operate at a
very low baud rate in comparison with the primary channel to ensure reliability in the control path. In
addition, it may operate as either a simplex, half-duplex, or full-duplex channel, depending on the
capabilities of the modem.

Transmitter and receiver timing signals (pins 15, 17, and 24) are used only for a synchronous

transmission protocol. For the standard asynchronous 8-bit protocol, external timing signals are
unnecessary.

IMPORTANT: Signal names that imply a direction, such as Transmit Data and Receive
Data, are named from the point of view of the DTE device. If the EIA232 standard were
strictly followed, these signals would have the same name for the same pin number on the
DCE side as well. Unfortunately, this is not done in practice by most engineers, probably
because no one can keep straight which side is DTE and which is DCE. As a result,
direction-sensitive signal names are changed at the DCE side to reflect their drive direction
at DCE. The following list gives the conventional usage of signal names:

Cable Wiring Examples
Next Topic | Previous Topic | TOC

The following wiring diagrams come from actual cables scanned by the CableEye® PC-Based Cable
Test System. CableEye’s software automatically draws schematics whenever it tests a cable. Click here
to learn more about CableEye.

1 - DB9 All-Line Direct Extension
Next Cable | (no previous cable) || Next Topic

This shows a 9-pin DTE-to-DCE serial cable that would result if the
EIA232 standard were strictly followed. All 9 pins plus shield are directly
extended from DB9 Female to DB9 Male. There are no crossovers or
self-connects present. Use this cable to connect modems, printers, or any
device that uses a DB9 connector to a PC’s serial port.

This cable may also serve as an extension cable to increase the distance
between a computer and serial device. Caution: do not exceed 25 feet
separation between devices without a signal booster!

80K

Left Side: Connect to DTE
(computer)

 Right Side: Connect to DCE (modem or other
serial device)

Cable image created by CableEye®

2 - DB9 Loopback Connector
Next Cable | Previous Cable || Next Topic

A loopback connector usually consists of a connector without a cable and
includes internal wiring to reroute signals back to the sender. This DB9
female connector would attach to a DTE device such as a personal
computer. When the computer receives data, it will not know whether the
signals it receives come from a remote DCE device set to echo characters,
or from a loopback connector. Use loopback connectors to confirm proper
operation of the computer’s serial port. Once confirmed, insert the serial
cable you plan to use and attach the loopback to the end of the serial cable
to verify the cable.

In this case, Transmit Data joins to Received Data, Request-to-Send joins
to Clear-to-Send, and DTE-Ready joins to DCE-Ready and Received Line
Signal Detect.

80K

Left Side: Connect to DTE (computer) Right Side: (none)

Cable image created by CableEye®

3 - DB9 Null Modem Cable
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

The cable shown below is intended for RS232 asynchronous
communications (most PC-based systems). If you are using synchronous
communications, the null modem will have additional connections for
timing signals, and a DB25 connector would be necessary.

NOTE: Not all null modem cables connect handshaking lines the same
way. In this cable, Request-to-Send (RTS, pin 7) asserts the Carrier Detect
(pin 1) on the same side and the Clear-to-Send (CTS, pin 8) on the other
side of the cable.

This device may also be available in the form of an adapter.

80K

Left Side: Connect to 9-pin DTE
(computer)

 Right Side: Connect to 9-pin DTE
(computer)

Cable image created by CableEye®

4 - DB25 to DB9 Adapter
Next Cable | Previous Cable || Next Topic

Signals on the DB25 DTE side are directly mapped to the DB9
assignments for a DTE device. Use this to adapt a 25-pin COM connector
on the back of a computer to mate with a 9-pin serial DCE device, such as
a 9-pin serial mouse or modem. This adapter may also be in the form of a
cable.

80K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 9-pin DCE
(modem)

Cable image created by CableEye®

5 - DB25 to DB9 Adapter (pin 1 connected to shield)
Next Cable | Previous Cable || Next Topic

This adapter has the same wiring as the previous cable (#4) except that pin
1 is wired to the connector shell (shield). Note that the cable’s shield is
usually a foil blanket surrounding all conductors running the length of the
cable and joining the connector shells. Pin 1 of the EIA232 specification,
called out as "shield", may be separate from the earth ground usually
associated with the connector shells.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 9-pin DCE
(modem)

Cable image created by CableEye®

6 - DB9 to DB25 Adapter
Next Cable | Previous Cable || Next Topic

Signals on the DB9 DTE side are directly mapped to the DB25
assignments for a DTE device. Use this to adapt a 9-pin COM connector
on the back of a computer to mate with a 25-pin serial DCE devices, such
as a modem. This adapter may also be in the form of a cable.

80K

Left Side: Connect to 9-pin DTE
(computer)

 Right Side: Connect to 25-pin DCE
(modem)

Cable image created by CableEye®

7 - DB25 All-Line Direct Extension
Next Cable | Previous Cable || Next Topic

This shows a 25-pin DTE-to-DCE serial cable that would result if the
EIA232 standard were strictly followed. All 25 pins plus shield are directly
extended from DB25 Female to DB25 Male. There are no crossovers or
self-connects present. Use this cable to connect modems, printers, or any
serial device that uses a DB25 connector to a PC’s serial port.

This cable may also serve as an extension cable to increase the distance
between computer and serial device. Caution: do not exceed 25 feet
separation between devices without a signal booster!

Caution: the male end of this cable (right) also fits a PC’s parallel printer
port. You may use this cable to extend the length of a printer cable, but DO
NOT attach a serial device to the computer’s parallel port. Doing so may
cause damage to both devices.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DCE
(modem)

Cable image created by CableEye®

8 - DB25 Loopback Connector
Next Cable | Previous Cable || Next Topic

A loopback connector usually consists of a connector without a cable and
includes internal wiring to reroute signals back to the sender. This DB25
female connector would attach to a DTE device such as a personal
computer. When the computer receives data, it will not know whether the
signals it receives come from a remote DCE device set to echo characters,
or from a loopback connector. Use loopback connectors to confirm proper
operation of the computer’s serial port. Once confirmed, insert the serial
cable you plan to use and attach the loopback to the end of the serial cable
the verify the cable.

In this case, Transmit Data joins to Received Data, Request-to-Send joins
to Clear-to-Send, and DTE-Ready joins to DCE-Ready and Received Line
Signal Detect.

80K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: (none)

Cable image created by CableEye®

9 - DB25 Null Modem (no handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

Note that Pins 11 and 12 are not necessary for this null modem cable to
work. As is often the case, the manufacturer of equipment that uses this
cable had a proprietary application in mind. We show it here to emphasize
that custom serial cables may include connections for which no purpose is
clear.

IMPORTANT: This cable employs NO handshaking lines between
devices. The handshake signals on each side are artificially made to appear
asserted by the use of self-connects on each side of the cable (for example,
between pins 4 and 5). Without hardware handshaking, you risk buffer
overflow at one or both ends of the transmission unless STX and ETX
commands are inserted in the dataflow by software.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

10 - DB25 Null Modem (standard handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

The cable shown below is intended for EIA232 asynchronous
communications (most PC-based systems). If you are using synchronous
communications, the null modem will have additional connections for
timing signals not shown here.

NOTE: Not all null modem cables connect handshaking lines the same
way. Refer to the manual for your equipment if you experience problems.
In this cable, the DTE Ready (pin 20) on one side asserts the DCE Ready
(pin 6) and the Request to Send (pin 5) on the other side.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

11 - DB25 Null Modem (unusual handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

NOTE: Not all null modem cables connect handshaking lines the same
way. Refer to the manual for your equipment if you experience problems.
In this cable, the DTE Ready (pin 20) on one side asserts the Clear to Send
(pin 5), DCE Ready (pin 6), and Carrier Detect (pin 8) on the other side.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

12 - DB25 Null Modem (unusual handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

NOTE: Not all null modem cables connect handshaking lines the same
way. Refer to the manual for your equipment if you experience problems.
In this cable, the Request-to-Send (pin 4) on one side asserts the
Clear-to-Send (pin 5) on the SAME side (self-connect) and the Carrier
Detect (pin 8) on the other side. The other handshaking signals are
employed in a conventional manner.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

13 - DB25 Null Modem (unusual handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

NOTE: Not all null modem cables connect handshaking lines the same
way. Refer to the manual for your equipment if you experience problems.
In this cable, the DTE Ready (pin 20) on one side asserts the Clear-to-Send
(pin 5) and the DCE Ready (pin 6) on the other side. Request-to-Send (pin
4) on one side asserts Received Line Signal Detect (pin 8) on the other
side.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

14 - DB25 Null Modem (unusual handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

NOTE: Not all null modem cables connect handshaking lines the same
way. Refer to the manual for your equipment if you experience problems.
In this cable, the DTE Ready (pin 20) on one side asserts the DCE Ready
(pin 6), and Carrier Detect (pin 8) on the other side. Request to Send (pin
4) is unused, and Clear-to-Send (pin 5) is driven by a proprietary signal
(pin 11) determined by the designer of this cable.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

15 - DB25 Null Modem Cable (synchronous communications)
Next Cable | Previous Cable || Next Topic

This female-to-female cable is intended for synchronous EIA232
connections, and is designed to connect two DTE devices. It contains the
standard connections of an asynchronous null modem cable, plus
additional connections on pins 15, 17, and 24 for synchronous timing
signals. To connect two DCE devices, use a male-to-male equivalent of
this cable.

For synchronous communications, the null modem cable includes an
additional conductor for timing signals, and joins pins 15, 17, and 24 on
one side to pins 15 and 17 on the other. Pin 24 on the right side should
connect to the timing signal source.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

16 - DB25 Null Modem Cable (unconventional, may pose risk)
(no more) | Previous Cable || Next Topic

This simplified null modem cable uses only Request-to-Send (pin 4) and
Clear-to-Send (pin 5) as handshaking lines; DTE Ready, DCE Ready, and
Carrier Detect are not employed, so this cable should not be used with
modems.

CAUTION! Normally, null modem cables have the same gender on each
connector (either both male for two DTE devices, or both female for two
DCE devices). This cable would be used when the gender on one of the
devices does not conform to the standard. However, the opposite genders
imply usage as a straight through cable, and if used in that manner will not
function. Further, if used as a standard null-modem between two
computers, the opposite gender allows you to connect one end to the
parallel port, an impermissible situation that may cause hardware damage.

80K

Left Side: Connect to 25-pin DTE
(computer) with Gender Changer

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

Signal Definitions
Next Topic | Previous Topic | TOC

Signal functions in the EIA232 standard can be subdivided into six categories. These categories are
summarized below, after which each signal described.

1 - Signal ground and shield.

2 - Primary communications channel. This is used for data interchange, and includes flow
control signals.

3 - Secondary communications channel. When implemented, this is used for control of the
remote modem, requests for retransmission when errors occur, and governance over the
setup of the primary channel.

4 - Modem status and control signals. These signals indicate modem status and provide
intermediate checkpoints as the telephone voice channel is established.

5 - Transmitter and receiver timing signals. If a synchronous protocol is used, these signals
provide timing information for the transmitter and receiver, which may operate at different
baud rates.

6 - Channel test signals. Before data is exchanged, the channel may be tested for its integrity,
and the baud rate automatically adjusted to the maximum rate that the channel can support.

Signal Ground and Shield

Next Topic | Previous Topic | TOC

Pin 7, Pin 1, and the shell are included in this category. Cables provide separate paths for each, but
internal wiring often connects pin 1 and the cable shell/shield to signal ground on pin 7.

Pin 7 - Ground All signals are referenced to a common ground, as defined by the voltage on pin 7.
This conductor may or may not be connected to protective ground inside the DCE device. The existence
of a defined ground potential within the cable makes the EIA232 standard different from a balanced
differential voltage standard, such as EIA530, which provides far greater noise immunity.

Primary Communications Channel
Next Topic | Previous Topic | TOC

Pin 2 - Transmitted Data (TxD) This signal is active when data is transmitted from the DTE device to
the DCE device. When no data is transmitted, the signal is held in the mark condition (logic ’1’,
negative voltage).

NOTE: Pin 2 on the DCE device is commonly labeled "Received Data", although by the
EIA232 standard it should still be called Transmitted Data because the data is thought to be
destined for a remote DTE device.

Pin 3 - Received Data (RxD) This signal is active when the DTE device receives data from the DCE
device. When no data is transmitted, the signal is held in the mark condition (logic ’1’, negative
voltage).

NOTE: Pin 3 on the DCE device is commonly labeled "Transmitted Data", although by the
EIA232 standard it should still be called Received Data because the data is thought to arrive
from a remote DTE device.

Pin 4 - Request to Send (RTS) This signal is asserted (logic ’0’, positive voltage) to prepare the DCE
device for accepting transmitted data from the DTE device. Such preparation might include enabling the
receive circuits, or setting up the channel direction in half-duplex applications. When the DCE is ready,
it acknowledges by asserting Clear to Send.

NOTE: Pin 4 on the DCE device is commonly labeled "Clear to Send", although by the
EIA232 standard it should still be called Request to Send because the request is thought to be
destined for a remote DTE device.

Pin 5 - Clear to Send (CTS) This signal is asserted (logic ’0’, positive voltage) by the DCE device to
inform the DTE device that transmission may begin. RTS and CTS are commonly used as handshaking
signals to moderate the flow of data into the DCE device.

NOTE: Pin 5 on the DCE device is commonly labeled "Request to Send", although by the

EIA232 standard it should still be called Clear to Send because the signal is thought to
originate from a remote DTE device.

Secondary Communications Channel
Next Topic | Previous Topic | TOC

Pin 14 - Secondary Transmitted Data (STxD)

Pin 16 - Secondary Received Data (SRxD)

Pin 19 - Secondary Request to Send (SRTS)

Pin 13 - Secondary Clear to Send (SCTS)

These signals are equivalent to the corresponding signals in the primary communications channel. The
baud rate, however, is typically much slower in the secondary channel for increased reliability.

Modem Status and Control Signals
Next Topic | Previous Topic | TOC

Pin 6 - DCE Ready (DSR) When originating from a modem, this signal is asserted (logic ’0’, positive
voltage) when the following three conditions are all satisfied:

1 - The modem is connected to an active telephone line that is "off-hook";

2 - The modem is in data mode, not voice or dialing mode; and

3 - The modem has completed dialing or call setup functions and is generating an answer
tone.

If the line goes "off-hook", a fault condition is detected, or a voice connection is established, the DCE
Ready signal is deasserted (logic ’1’, negative voltage).

IMPORTANT: If DCE Ready originates from a device other than a modem, it may be
asserted to indicate that the device is turned on and ready to function, or it may not be used
at all. If unused, DCE Ready should be permanently asserted (logic ’0’, positive voltage)
within the DCE device or by use of a self-connect jumper in the cable. Alternatively, the
DTE device may be programmed to ignore this signal.

Pin 20 - DTE Ready (DTR) This signal is asserted (logic ’0’, positive voltage) by the DTE device
when it wishes to open a communications channel. If the DCE device is a modem, the assertion of DTE
Ready prepares the modem to be connected to the telephone circuit, and, once connected, maintains the

connection. When DTE Ready is deasserted (logic ’1’, negative voltage), the modem is switched to
"on-hook" to terminate the connection.

IMPORTANT: If the DCE device is not a modem, it may require DTE Ready to be asserted
before the device can be used, or it may ignore DTE Ready altogether. If the DCE device
(for example, a printer) is not responding, confirm that DTE Ready is asserted before you
search for other explanations.

Pin 8 - Received Line Signal Detector (CD) (also called carrier detect) This signal is relevant when
the DCE device is a modem. It is asserted (logic ’0’, positive voltage) by the modem when the telephone
line is "off-hook", a connection has been established, and an answer tone is being received from the
remote modem. The signal is deasserted when no answer tone is being received, or when the answer
tone is of inadequate quality to meet the local modem’s requirements (perhaps due to a noisy channel).

Pin 12 - Secondary Received Line Signal Detector (SCD) This signal is equivalent to the Received
Line Signal Detector (pin 8), but refers to the secondary channel.

Pin 22 - Ring Indicator (RI) This signal is relevant when the DCE device is a modem, and is asserted
(logic ’0’, positive voltage) when a ringing signal is being received from the telephone line. The
assertion time of this signal will approximately equal the duration of the ring signal, and it will be
deasserted between rings or when no ringing is present.

Pin 23 - Data Signal Rate Selector This signal may originate either in the DTE or DCE devices (but
not both), and is used to select one of two prearranged baud rates. The asserted condition (logic ’0’,
positive voltage) selects the higher baud rate.

Transmitter and Receiver Timing Signals
Next Topic | Previous Topic | TOC

Pin 15 - Transmitter Signal Element Timing (TC) (also called Transmitter Clock) This signal is
relevant only when the DCE device is a modem and is operating with a synchronous protocol. The
modem generates this clock signal to control exactly the rate at which data is sent on Transmitted Data
(pin 2) from the DTE device to the DCE device. The logic ’1’ to logic ’0’ (negative voltage to positive
voltage) transition on this line causes a corresponding transition to the next data element on the
Transmitted Data line. The modem generates this signal continuously, except when it is performing
internal diagnostic functions.

Pin 17 - Receiver Signal Element Timing (RC) (also called Receiver Clock) This signal is similar to
TC described above, except that it provides timing information for the DTE receiver.

Pin 24 - Transmitter Signal Element Timing (ETC) (also called External Transmitter Clock) Timing
signals are provided by the DTE device for use by a modem. This signal is used only when TC and RC
(pins 15 and 17) are not in use. The logic ’1’ to logic ’0’ transition (negative voltage to positive voltage)
indicates the time-center of the data element. Timing signals will be provided whenever the DTE is
turned on, regardless of other signal conditions.

Channel Test Signals
Next Topic | Previous Topic | TOC

Pin 18 - Local Loopback (LL) This signal is generated by the DTE device and is used to place the
modem into a test state. When Local Loopback is asserted (logic ’0’, positive voltage), the modem
redirects its modulated output signal, which is normally fed into the telephone line, back into its receive
circuitry. This enables data generated by the DTE to be echoed back through the local modem to check
the condition of the modem circuitry. The modem asserts its Test Mode signal on Pin 25 to acknowledge
that it has been placed in local loopback condition.

Pin 21 - Remote Loopback (RL) This signal is generated by the DTE device and is used to place the
remote modem into a test state. When Remote Loopback is asserted (logic ’0’, positive voltage), the
remote modem redirects its received data back to its transmitted data input, thereby remodulating the
received data and returning it to its source. When the DTE initiates such a test, transmitted data is passed
through the local modem, the telephone line, the remote modem, and back, to exercise the channel and
confirm its integrity. The remote modem signals the local modem to assert Test Mode on pin 25 when
the remote loopback test is underway.

Pin 25 - Test Mode (TM) This signal is relevant only when the DCE device is a modem. When
asserted (logic ’0’, positive voltage), it indicates that the modem is in a Local Loopback or Remote
Loopback condition. Other internal self-test conditions may also cause Test Mode to be asserted, and
depend on the modem and the network to which it is attached.

Electrical Standards
Next Topic | Previous Topic | TOC

The EIA232 standard uses negative, bipolar logic in which a negative voltage signal represents logic ’1’,
and positive voltage represents logic ’0’. This probably originated with the pre-RS232 current loop
standard used in 1950s-vintage teletype machines in which a flowing current (and hence a low voltage)
represents logic ’1’. Be aware that the negative logic assignment of EIA232 is the reverse of that found
in most modern digital circuit designs. See the inside rear cover of the CableEye manual for a
comparison.

Common Signal Ground
Next Topic | Previous Topic | TOC

The EIA232 standard includes a common ground reference on Pin 7, and is frequently joined to Pin 1
and a circular shield that surrounds all 25 cable conductors. Data, timing, and control signal voltages are
measured with respect to this common ground. EIA232 cannot be used in applications where the
equipment on opposite ends of the connection must be electrically isolated.

NOTE: optical isolators may be used to achieve ground isolation, however, this option is not
mentioned or included in the EIA232 specification.

Signal Characteristics
Next Topic | Previous Topic | TOC

Equivalent Circuit - All signal lines, regardless of whether they provide data, timing, or control
information, may be represented by the electrical equivalent circuit shown here:

This is the equivalent circuit for an EIA232 signal line and applies to signals
originating at either the DTE or DCE side of the connection. "Co" is not

specified in the standard, but is assumed to be small and to consist of parasitic
elements only. "Ro" and "Vo" are chosen so that the short-circuit current does
not exceed 500ma. The cable length is not specified in the standard; acceptable

operation is experienced with cables that are less than 25 feet in length.

Signal State Voltage Assignments - Voltages of -3v to -25v with respect to signal ground (pin 7) are
considered logic ’1’ (the marking condition), whereas voltages of +3v to +25v are considered logic ’0’
(the spacing condition). The range of voltages between -3v and +3v is considered a transition region for
which a signal state is not assigned.

Logic states are assigned to the voltage ranges shown here. Note that this is a
"negative logic" convention, which is the reverse of that used in most modern

digital designs.

Most contemporary applications will show an open-circuit signal voltage of -8 to -14 volts for logic ’1’
(mark), and +8 to +14 volts for logic ’0’ (space). Voltage magnitudes will be slightly less when the
generator and receiver are connected (when the DTE and DCE devices are connected with a cable).

IMPORTANT: If you insert an LED signal tester in an EIA232 circuit to view signal states,
the signal voltage may drop in magnitude to very near the minimum values of -3v for logic
’1’, and +3v for logic ’0’. Also note that some inexpensive EIA232 peripherals are powered
directly from the signal lines to avoid using a power supply of their own. Although this
usually works without problems, keep the cable short, and be aware that noise immunity will
be reduced.

Short-Circuit Tolerance - The generator is designed to withstand an open-circuit (unconnected)
condition, or short-circuit condition between its signal conductor and any other signal conductor,
including ground, without sustaining damage to itself or causing damage to any associated circuitry. The
receiver is also designed to accept any signal voltage within the range of ±25 volts without sustaining
damage.

CAUTION: Inductive loads or magnetically induced voltages resulting from long cables may
cause the received voltage to exceed the ±25-volt range momentarily during turn-on
transients or other abnormal conditions, possibly causing damage to the generator, receiver,
or both. Keep the cable length as short as possible, and avoid running the cable near
high-current switching loads like electric motors or relays.

Fail-Safe Signals - Four signals are intended to be fail-safe in that during power-off or
cable-disconnected conditions, they default to logic ’1’ (negative voltage). They are:

Request to Send - Default condition is deasserted.

Sec. Request to Send - Default condition is deasserted.

DTE Ready - Default condition is DTE not ready.

DCE Ready - Default condition is DCE not ready.
Note specifically that if the cable is connected but the power is off in the generator side, or if the cable is
disconnected, there should be adequate bias voltage in the receiver to keep the signal above +3v (logic
’0’) to ensure that the fail-safe requirement is met.

Schmitt triggers or other hysteresis devices may be used to enhance noise immunity in some designs, but
should never be adjusted to compromise the fail-safe requirement.

Signal Timing
Next Topic | Previous Topic | TOC

The EIA232 standard is applicable to data rates of up to 20,000 bits per second (the usual upper limit is
19,200 baud). Fixed baud rates are not set by the EIA232 standard. However, the commonly used values
are 300, 1200, 2400, 9600, and 19,200 baud. Other accepted values that are not often used are 110
(mechanical teletype machines), 600, and 4800 baud.

Changes in signal state from logic ’1’ to logic ’0’ or vice versa must abide by several requirements, as
follows:

1 - Signals that enter the transition region during a change of state must move through the
transition region to the opposite signal state without reversing direction or reentering.

2 - For control signals, the transit time through the transition region should be less than 1ms.

3 - For Data and Timing signals, the transit time through the transition region should be

a - less than 1ms for bit periods greater than 25ms,

b - 4% of the bit period for bit periods between 25ms and 125µs,

c - less than 5µs for bit periods less than 125µs.
The rise and fall times of data and timing signals ideally should be equal, but in
any case vary by no more than a factor of three.

An acceptable pulse (top) moves through the transition region quickly and
without hesitation or reversal. Defective pulses (bottom) could cause data errors.

4 - The slope of the rising and falling edges of a transition should not exceed 30v/µS. Rates
higher than this may induce crosstalk in adjacent conductors of a cable.

Note that neither the ASCII alphabet nor the asynchronous serial protocol that defines the start bit,
number of data bits, parity bit, and stop bit, is part of the EIA232 specification. For your reference, it is
discussed in the Data Communications Basics section of this web site.

Accepted Simplifications of the Standard
Previous Topic | TOC

The EIA232 document published by the Electronic Industries Association describes 14 permissible
configurations of the original 22-signal standard. Each configuration uses a subset of the 22 defined
signals, and serves a more limited communications requirement than that suggested by using all the
available 22-signals. Applications for transmit-only, receive-only, half-duplex operation, and similar
variations, are described. Unfortunately, connection to DCE devices other than modems is not
considered. Because many current serial interface applications involve direct device-to-device
connections, manufacturers do not have a standard reference when producing printers, plotters, print
spoolers, or other common peripherals. Consequently, you must acquire the service manual for each
peripheral device purchased to determine exactly which signals are utilized in its serial interface.

END

Return to TOC

(renamed the "EIA232 Standard" in the early 1990’s)

Written by Christopher E. Strangio
Copyright © 1993-2003 by CAMI Research Inc., Lexington, Massachusetts

Send Us Your Comments . . .

Contents

What is EIA232?
Likely Problems when Using an EIA232 Interface
Pin Assignments
Cable Wiring Examples (New!)
Signal Definitions
Signal Ground and Shield
Primary Communications Channel
Secondary Communications Channel
Modem Status and Control Signals
Transmitter and Receiver Timing Signals
Channel Test Signals
Electrical Standards
Common Signal Ground
Signal Characteristics
Signal Timing
Accepted Simplifications of the Standard

Pin Description Index

References to EIA Publications

Back to CableEye® Home Page

What is EIA232?
Next Topic | TOC

In the early 1960s, a standards committee, today known as the Electronic Industries Association,
developed a common interface standard for data communications equipment. At that time, data
communications was thought to mean digital data exchange between a centrally located mainframe
computer and a remote computer terminal, or possibly between two terminals without a computer
involved. These devices were linked by telephone voice lines, and consequently required a modem at
each end for signal translation. While simple in concept, the many opportunities for data error that occur
when transmitting data through an analog channel require a relatively complex design. It was thought
that a standard was needed first to ensure reliable communication, and second to enable the

interconnection of equipment produced by different manufacturers, thereby fostering the benefits of
mass production and competition. From these ideas, the RS232 standard was born. It specified signal
voltages, signal timing, signal function, a protocol for information exchange, and mechanical
connectors.

Over the 40+ years since this standard was developed, the Electronic Industries Association published
three modifications, the most recent being the EIA232E standard introduced in 1991. Besides changing
the name from RS232 to EIA232, some signal lines were renamed and various new ones were defined,
including a shield conductor.

Likely Problems when Using an EIA232 Interface
Next Topic | Previous Topic | TOC

During this 40-year-long, rapidly evolving period in electronics, manufacturers adopted simplified
versions of this interface for applications that were impossible to envision in the 1960s. Today, virtually
all contemporary serial interfaces are EIA232-like in their signal voltages, protocols, and connectors,
whether or not a modem is involved. Because no single "simplified" standard was agreed upon,
however, many slightly different protocols and cables were created that obligingly mate with any
EIA232 connector, but are incompatible with each other. Most of the difficulties you will encounter in
EIA232 interfacing include at least one of the following:

1 - The absence or misconnection of flow control (handshaking) signals, resulting in buffer
overflow or communications lock-up.

2 - Incorrect communications function (DTE versus DCE) for the cable in use, resulting in
the reversal of the Transmit and Receive data lines as well as one or more handshaking lines.

3 - Incorrect connector gender or pin configuration, preventing cable connectors from mating
properly.

Fortunately, EIA232 driver circuitry is highly tolerant of misconnections, and will usually survive a
drive signal being connected to ground, or two drive signals connected to each other. In any case, if the
serial interface between two devices is not operating correctly, disconnect the cable joining this
equipment until the problem is isolated.

Pin Assignments
Next Topic | Previous Topic | TOC

Go to DTE Pinout (looking into the computer’s serial connector)
Go to DCE Pinout (looking into the modem’s serial connector)

If the full EIA232 standard is implemented as defined, the equipment at the far end of the connection is

named the DTE device (Data Terminal Equipment, usually a computer or terminal), has a male DB25
connector, and utilizes 22 of the 25 available pins for signals or ground. Equipment at the near end of
the connection (the telephone line interface) is named the DCE device (Data Circuit-terminating
Equipment, usually a modem), has a female DB25 connector, and utilizes the same 22 available pins for
signals and ground. The cable linking DTE and DCE devices is a parallel straight-through cable with no
cross-overs or self-connects in the connector hoods. If all devices exactly followed this standard, all
cables would be identical, and there would be no chance that an incorrectly wired cable could be used.
This drawing shows the orientation and connector types for DTE and DCE devices:

EIA232 communication function and connector types for a personal computer
and modem. DCE devices are sometimes called "Data Communications
Equipment" instead of Data Circuit-terminating Equipment.

Here is the full EIA232 signal definition for the DTE device (usually the PC). The most commonly used
signals are shown in bold.

[back to Pin Assignments description]

Copyright © 1993-2002 CAMI Research Inc.

This shows the full EIA232 signal definition for the DCE device (usually the modem). The most
commonly used signals are shown in bold.

[back to Pin Assignments description]

Copyright © 1993-2003 CAMI Research Inc.

Many of the 22 signal lines in the EIA232 standard pertain to connections where the DCE device is a
modem, and then are used only when the software protocol employs them. For any DCE device that is
not a modem, or when two DTE devices are directly linked, far fewer signal lines are necessary.

You may have noticed in the pinout drawings that there is a secondary channel which includes a
duplicate set of flow-control signals. This secondary channel provides for management of the remote
modem, enabling baud rates to be changed on the fly, retransmission to be requested if a parity error is
detected, and other control functions. This secondary channel, when used, is typically set to operate at a
very low baud rate in comparison with the primary channel to ensure reliability in the control path. In
addition, it may operate as either a simplex, half-duplex, or full-duplex channel, depending on the
capabilities of the modem.

Transmitter and receiver timing signals (pins 15, 17, and 24) are used only for a synchronous

transmission protocol. For the standard asynchronous 8-bit protocol, external timing signals are
unnecessary.

IMPORTANT: Signal names that imply a direction, such as Transmit Data and Receive
Data, are named from the point of view of the DTE device. If the EIA232 standard were
strictly followed, these signals would have the same name for the same pin number on the
DCE side as well. Unfortunately, this is not done in practice by most engineers, probably
because no one can keep straight which side is DTE and which is DCE. As a result,
direction-sensitive signal names are changed at the DCE side to reflect their drive direction
at DCE. The following list gives the conventional usage of signal names:

Cable Wiring Examples
Next Topic | Previous Topic | TOC

The following wiring diagrams come from actual cables scanned by the CableEye® PC-Based Cable
Test System. CableEye’s software automatically draws schematics whenever it tests a cable. Click here
to learn more about CableEye.

1 - DB9 All-Line Direct Extension
Next Cable | (no previous cable) || Next Topic

This shows a 9-pin DTE-to-DCE serial cable that would result if the
EIA232 standard were strictly followed. All 9 pins plus shield are directly
extended from DB9 Female to DB9 Male. There are no crossovers or
self-connects present. Use this cable to connect modems, printers, or any
device that uses a DB9 connector to a PC’s serial port.

This cable may also serve as an extension cable to increase the distance
between a computer and serial device. Caution: do not exceed 25 feet
separation between devices without a signal booster!

80K

Left Side: Connect to DTE
(computer)

 Right Side: Connect to DCE (modem or other
serial device)

Cable image created by CableEye®

2 - DB9 Loopback Connector
Next Cable | Previous Cable || Next Topic

A loopback connector usually consists of a connector without a cable and
includes internal wiring to reroute signals back to the sender. This DB9
female connector would attach to a DTE device such as a personal
computer. When the computer receives data, it will not know whether the
signals it receives come from a remote DCE device set to echo characters,
or from a loopback connector. Use loopback connectors to confirm proper
operation of the computer’s serial port. Once confirmed, insert the serial
cable you plan to use and attach the loopback to the end of the serial cable
to verify the cable.

In this case, Transmit Data joins to Received Data, Request-to-Send joins
to Clear-to-Send, and DTE-Ready joins to DCE-Ready and Received Line
Signal Detect.

80K

Left Side: Connect to DTE (computer) Right Side: (none)

Cable image created by CableEye®

3 - DB9 Null Modem Cable
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

The cable shown below is intended for RS232 asynchronous
communications (most PC-based systems). If you are using synchronous
communications, the null modem will have additional connections for
timing signals, and a DB25 connector would be necessary.

NOTE: Not all null modem cables connect handshaking lines the same
way. In this cable, Request-to-Send (RTS, pin 7) asserts the Carrier Detect
(pin 1) on the same side and the Clear-to-Send (CTS, pin 8) on the other
side of the cable.

This device may also be available in the form of an adapter.

80K

Left Side: Connect to 9-pin DTE
(computer)

 Right Side: Connect to 9-pin DTE
(computer)

Cable image created by CableEye®

4 - DB25 to DB9 Adapter
Next Cable | Previous Cable || Next Topic

Signals on the DB25 DTE side are directly mapped to the DB9
assignments for a DTE device. Use this to adapt a 25-pin COM connector
on the back of a computer to mate with a 9-pin serial DCE device, such as
a 9-pin serial mouse or modem. This adapter may also be in the form of a
cable.

80K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 9-pin DCE
(modem)

Cable image created by CableEye®

5 - DB25 to DB9 Adapter (pin 1 connected to shield)
Next Cable | Previous Cable || Next Topic

This adapter has the same wiring as the previous cable (#4) except that pin
1 is wired to the connector shell (shield). Note that the cable’s shield is
usually a foil blanket surrounding all conductors running the length of the
cable and joining the connector shells. Pin 1 of the EIA232 specification,
called out as "shield", may be separate from the earth ground usually
associated with the connector shells.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 9-pin DCE
(modem)

Cable image created by CableEye®

6 - DB9 to DB25 Adapter
Next Cable | Previous Cable || Next Topic

Signals on the DB9 DTE side are directly mapped to the DB25
assignments for a DTE device. Use this to adapt a 9-pin COM connector
on the back of a computer to mate with a 25-pin serial DCE devices, such
as a modem. This adapter may also be in the form of a cable.

80K

Left Side: Connect to 9-pin DTE
(computer)

 Right Side: Connect to 25-pin DCE
(modem)

Cable image created by CableEye®

7 - DB25 All-Line Direct Extension
Next Cable | Previous Cable || Next Topic

This shows a 25-pin DTE-to-DCE serial cable that would result if the
EIA232 standard were strictly followed. All 25 pins plus shield are directly
extended from DB25 Female to DB25 Male. There are no crossovers or
self-connects present. Use this cable to connect modems, printers, or any
serial device that uses a DB25 connector to a PC’s serial port.

This cable may also serve as an extension cable to increase the distance
between computer and serial device. Caution: do not exceed 25 feet
separation between devices without a signal booster!

Caution: the male end of this cable (right) also fits a PC’s parallel printer
port. You may use this cable to extend the length of a printer cable, but DO
NOT attach a serial device to the computer’s parallel port. Doing so may
cause damage to both devices.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DCE
(modem)

Cable image created by CableEye®

8 - DB25 Loopback Connector
Next Cable | Previous Cable || Next Topic

A loopback connector usually consists of a connector without a cable and
includes internal wiring to reroute signals back to the sender. This DB25
female connector would attach to a DTE device such as a personal
computer. When the computer receives data, it will not know whether the
signals it receives come from a remote DCE device set to echo characters,
or from a loopback connector. Use loopback connectors to confirm proper
operation of the computer’s serial port. Once confirmed, insert the serial
cable you plan to use and attach the loopback to the end of the serial cable
the verify the cable.

In this case, Transmit Data joins to Received Data, Request-to-Send joins
to Clear-to-Send, and DTE-Ready joins to DCE-Ready and Received Line
Signal Detect.

80K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: (none)

Cable image created by CableEye®

9 - DB25 Null Modem (no handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

Note that Pins 11 and 12 are not necessary for this null modem cable to
work. As is often the case, the manufacturer of equipment that uses this
cable had a proprietary application in mind. We show it here to emphasize
that custom serial cables may include connections for which no purpose is
clear.

IMPORTANT: This cable employs NO handshaking lines between
devices. The handshake signals on each side are artificially made to appear
asserted by the use of self-connects on each side of the cable (for example,
between pins 4 and 5). Without hardware handshaking, you risk buffer
overflow at one or both ends of the transmission unless STX and ETX
commands are inserted in the dataflow by software.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

10 - DB25 Null Modem (standard handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

The cable shown below is intended for EIA232 asynchronous
communications (most PC-based systems). If you are using synchronous
communications, the null modem will have additional connections for
timing signals not shown here.

NOTE: Not all null modem cables connect handshaking lines the same
way. Refer to the manual for your equipment if you experience problems.
In this cable, the DTE Ready (pin 20) on one side asserts the DCE Ready
(pin 6) and the Request to Send (pin 5) on the other side.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

11 - DB25 Null Modem (unusual handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

NOTE: Not all null modem cables connect handshaking lines the same
way. Refer to the manual for your equipment if you experience problems.
In this cable, the DTE Ready (pin 20) on one side asserts the Clear to Send
(pin 5), DCE Ready (pin 6), and Carrier Detect (pin 8) on the other side.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

12 - DB25 Null Modem (unusual handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

NOTE: Not all null modem cables connect handshaking lines the same
way. Refer to the manual for your equipment if you experience problems.
In this cable, the Request-to-Send (pin 4) on one side asserts the
Clear-to-Send (pin 5) on the SAME side (self-connect) and the Carrier
Detect (pin 8) on the other side. The other handshaking signals are
employed in a conventional manner.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

13 - DB25 Null Modem (unusual handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

NOTE: Not all null modem cables connect handshaking lines the same
way. Refer to the manual for your equipment if you experience problems.
In this cable, the DTE Ready (pin 20) on one side asserts the Clear-to-Send
(pin 5) and the DCE Ready (pin 6) on the other side. Request-to-Send (pin
4) on one side asserts Received Line Signal Detect (pin 8) on the other
side.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

14 - DB25 Null Modem (unusual handshaking)
Next Cable | Previous Cable || Next Topic

Use this female-to-female cable in any application where you wish to
connect two DTE devices (for example, two computers). A male-to-male
equivalent of this cable would be used to connect two DCE devices.

NOTE: Not all null modem cables connect handshaking lines the same
way. Refer to the manual for your equipment if you experience problems.
In this cable, the DTE Ready (pin 20) on one side asserts the DCE Ready
(pin 6), and Carrier Detect (pin 8) on the other side. Request to Send (pin
4) is unused, and Clear-to-Send (pin 5) is driven by a proprietary signal
(pin 11) determined by the designer of this cable.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

15 - DB25 Null Modem Cable (synchronous communications)
Next Cable | Previous Cable || Next Topic

This female-to-female cable is intended for synchronous EIA232
connections, and is designed to connect two DTE devices. It contains the
standard connections of an asynchronous null modem cable, plus
additional connections on pins 15, 17, and 24 for synchronous timing
signals. To connect two DCE devices, use a male-to-male equivalent of
this cable.

For synchronous communications, the null modem cable includes an
additional conductor for timing signals, and joins pins 15, 17, and 24 on
one side to pins 15 and 17 on the other. Pin 24 on the right side should
connect to the timing signal source.

84K

Left Side: Connect to 25-pin DTE
(computer)

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

16 - DB25 Null Modem Cable (unconventional, may pose risk)
(no more) | Previous Cable || Next Topic

This simplified null modem cable uses only Request-to-Send (pin 4) and
Clear-to-Send (pin 5) as handshaking lines; DTE Ready, DCE Ready, and
Carrier Detect are not employed, so this cable should not be used with
modems.

CAUTION! Normally, null modem cables have the same gender on each
connector (either both male for two DTE devices, or both female for two
DCE devices). This cable would be used when the gender on one of the
devices does not conform to the standard. However, the opposite genders
imply usage as a straight through cable, and if used in that manner will not
function. Further, if used as a standard null-modem between two
computers, the opposite gender allows you to connect one end to the
parallel port, an impermissible situation that may cause hardware damage.

80K

Left Side: Connect to 25-pin DTE
(computer) with Gender Changer

 Right Side: Connect to 25-pin DTE
(computer)

Cable image created by CableEye®

Signal Definitions
Next Topic | Previous Topic | TOC

Signal functions in the EIA232 standard can be subdivided into six categories. These categories are
summarized below, after which each signal described.

1 - Signal ground and shield.

2 - Primary communications channel. This is used for data interchange, and includes flow
control signals.

3 - Secondary communications channel. When implemented, this is used for control of the
remote modem, requests for retransmission when errors occur, and governance over the
setup of the primary channel.

4 - Modem status and control signals. These signals indicate modem status and provide
intermediate checkpoints as the telephone voice channel is established.

5 - Transmitter and receiver timing signals. If a synchronous protocol is used, these signals
provide timing information for the transmitter and receiver, which may operate at different
baud rates.

6 - Channel test signals. Before data is exchanged, the channel may be tested for its integrity,
and the baud rate automatically adjusted to the maximum rate that the channel can support.

Signal Ground and Shield

Next Topic | Previous Topic | TOC

Pin 7, Pin 1, and the shell are included in this category. Cables provide separate paths for each, but
internal wiring often connects pin 1 and the cable shell/shield to signal ground on pin 7.

Pin 7 - Ground All signals are referenced to a common ground, as defined by the voltage on pin 7.
This conductor may or may not be connected to protective ground inside the DCE device. The existence
of a defined ground potential within the cable makes the EIA232 standard different from a balanced
differential voltage standard, such as EIA530, which provides far greater noise immunity.

Primary Communications Channel
Next Topic | Previous Topic | TOC

Pin 2 - Transmitted Data (TxD) This signal is active when data is transmitted from the DTE device to
the DCE device. When no data is transmitted, the signal is held in the mark condition (logic ’1’,
negative voltage).

NOTE: Pin 2 on the DCE device is commonly labeled "Received Data", although by the
EIA232 standard it should still be called Transmitted Data because the data is thought to be
destined for a remote DTE device.

Pin 3 - Received Data (RxD) This signal is active when the DTE device receives data from the DCE
device. When no data is transmitted, the signal is held in the mark condition (logic ’1’, negative
voltage).

NOTE: Pin 3 on the DCE device is commonly labeled "Transmitted Data", although by the
EIA232 standard it should still be called Received Data because the data is thought to arrive
from a remote DTE device.

Pin 4 - Request to Send (RTS) This signal is asserted (logic ’0’, positive voltage) to prepare the DCE
device for accepting transmitted data from the DTE device. Such preparation might include enabling the
receive circuits, or setting up the channel direction in half-duplex applications. When the DCE is ready,
it acknowledges by asserting Clear to Send.

NOTE: Pin 4 on the DCE device is commonly labeled "Clear to Send", although by the
EIA232 standard it should still be called Request to Send because the request is thought to be
destined for a remote DTE device.

Pin 5 - Clear to Send (CTS) This signal is asserted (logic ’0’, positive voltage) by the DCE device to
inform the DTE device that transmission may begin. RTS and CTS are commonly used as handshaking
signals to moderate the flow of data into the DCE device.

NOTE: Pin 5 on the DCE device is commonly labeled "Request to Send", although by the

EIA232 standard it should still be called Clear to Send because the signal is thought to
originate from a remote DTE device.

Secondary Communications Channel
Next Topic | Previous Topic | TOC

Pin 14 - Secondary Transmitted Data (STxD)

Pin 16 - Secondary Received Data (SRxD)

Pin 19 - Secondary Request to Send (SRTS)

Pin 13 - Secondary Clear to Send (SCTS)

These signals are equivalent to the corresponding signals in the primary communications channel. The
baud rate, however, is typically much slower in the secondary channel for increased reliability.

Modem Status and Control Signals
Next Topic | Previous Topic | TOC

Pin 6 - DCE Ready (DSR) When originating from a modem, this signal is asserted (logic ’0’, positive
voltage) when the following three conditions are all satisfied:

1 - The modem is connected to an active telephone line that is "off-hook";

2 - The modem is in data mode, not voice or dialing mode; and

3 - The modem has completed dialing or call setup functions and is generating an answer
tone.

If the line goes "off-hook", a fault condition is detected, or a voice connection is established, the DCE
Ready signal is deasserted (logic ’1’, negative voltage).

IMPORTANT: If DCE Ready originates from a device other than a modem, it may be
asserted to indicate that the device is turned on and ready to function, or it may not be used
at all. If unused, DCE Ready should be permanently asserted (logic ’0’, positive voltage)
within the DCE device or by use of a self-connect jumper in the cable. Alternatively, the
DTE device may be programmed to ignore this signal.

Pin 20 - DTE Ready (DTR) This signal is asserted (logic ’0’, positive voltage) by the DTE device
when it wishes to open a communications channel. If the DCE device is a modem, the assertion of DTE
Ready prepares the modem to be connected to the telephone circuit, and, once connected, maintains the

connection. When DTE Ready is deasserted (logic ’1’, negative voltage), the modem is switched to
"on-hook" to terminate the connection.

IMPORTANT: If the DCE device is not a modem, it may require DTE Ready to be asserted
before the device can be used, or it may ignore DTE Ready altogether. If the DCE device
(for example, a printer) is not responding, confirm that DTE Ready is asserted before you
search for other explanations.

Pin 8 - Received Line Signal Detector (CD) (also called carrier detect) This signal is relevant when
the DCE device is a modem. It is asserted (logic ’0’, positive voltage) by the modem when the telephone
line is "off-hook", a connection has been established, and an answer tone is being received from the
remote modem. The signal is deasserted when no answer tone is being received, or when the answer
tone is of inadequate quality to meet the local modem’s requirements (perhaps due to a noisy channel).

Pin 12 - Secondary Received Line Signal Detector (SCD) This signal is equivalent to the Received
Line Signal Detector (pin 8), but refers to the secondary channel.

Pin 22 - Ring Indicator (RI) This signal is relevant when the DCE device is a modem, and is asserted
(logic ’0’, positive voltage) when a ringing signal is being received from the telephone line. The
assertion time of this signal will approximately equal the duration of the ring signal, and it will be
deasserted between rings or when no ringing is present.

Pin 23 - Data Signal Rate Selector This signal may originate either in the DTE or DCE devices (but
not both), and is used to select one of two prearranged baud rates. The asserted condition (logic ’0’,
positive voltage) selects the higher baud rate.

Transmitter and Receiver Timing Signals
Next Topic | Previous Topic | TOC

Pin 15 - Transmitter Signal Element Timing (TC) (also called Transmitter Clock) This signal is
relevant only when the DCE device is a modem and is operating with a synchronous protocol. The
modem generates this clock signal to control exactly the rate at which data is sent on Transmitted Data
(pin 2) from the DTE device to the DCE device. The logic ’1’ to logic ’0’ (negative voltage to positive
voltage) transition on this line causes a corresponding transition to the next data element on the
Transmitted Data line. The modem generates this signal continuously, except when it is performing
internal diagnostic functions.

Pin 17 - Receiver Signal Element Timing (RC) (also called Receiver Clock) This signal is similar to
TC described above, except that it provides timing information for the DTE receiver.

Pin 24 - Transmitter Signal Element Timing (ETC) (also called External Transmitter Clock) Timing
signals are provided by the DTE device for use by a modem. This signal is used only when TC and RC
(pins 15 and 17) are not in use. The logic ’1’ to logic ’0’ transition (negative voltage to positive voltage)
indicates the time-center of the data element. Timing signals will be provided whenever the DTE is
turned on, regardless of other signal conditions.

Channel Test Signals
Next Topic | Previous Topic | TOC

Pin 18 - Local Loopback (LL) This signal is generated by the DTE device and is used to place the
modem into a test state. When Local Loopback is asserted (logic ’0’, positive voltage), the modem
redirects its modulated output signal, which is normally fed into the telephone line, back into its receive
circuitry. This enables data generated by the DTE to be echoed back through the local modem to check
the condition of the modem circuitry. The modem asserts its Test Mode signal on Pin 25 to acknowledge
that it has been placed in local loopback condition.

Pin 21 - Remote Loopback (RL) This signal is generated by the DTE device and is used to place the
remote modem into a test state. When Remote Loopback is asserted (logic ’0’, positive voltage), the
remote modem redirects its received data back to its transmitted data input, thereby remodulating the
received data and returning it to its source. When the DTE initiates such a test, transmitted data is passed
through the local modem, the telephone line, the remote modem, and back, to exercise the channel and
confirm its integrity. The remote modem signals the local modem to assert Test Mode on pin 25 when
the remote loopback test is underway.

Pin 25 - Test Mode (TM) This signal is relevant only when the DCE device is a modem. When
asserted (logic ’0’, positive voltage), it indicates that the modem is in a Local Loopback or Remote
Loopback condition. Other internal self-test conditions may also cause Test Mode to be asserted, and
depend on the modem and the network to which it is attached.

Electrical Standards
Next Topic | Previous Topic | TOC

The EIA232 standard uses negative, bipolar logic in which a negative voltage signal represents logic ’1’,
and positive voltage represents logic ’0’. This probably originated with the pre-RS232 current loop
standard used in 1950s-vintage teletype machines in which a flowing current (and hence a low voltage)
represents logic ’1’. Be aware that the negative logic assignment of EIA232 is the reverse of that found
in most modern digital circuit designs. See the inside rear cover of the CableEye manual for a
comparison.

Common Signal Ground
Next Topic | Previous Topic | TOC

The EIA232 standard includes a common ground reference on Pin 7, and is frequently joined to Pin 1
and a circular shield that surrounds all 25 cable conductors. Data, timing, and control signal voltages are
measured with respect to this common ground. EIA232 cannot be used in applications where the
equipment on opposite ends of the connection must be electrically isolated.

NOTE: optical isolators may be used to achieve ground isolation, however, this option is not
mentioned or included in the EIA232 specification.

Signal Characteristics
Next Topic | Previous Topic | TOC

Equivalent Circuit - All signal lines, regardless of whether they provide data, timing, or control
information, may be represented by the electrical equivalent circuit shown here:

This is the equivalent circuit for an EIA232 signal line and applies to signals
originating at either the DTE or DCE side of the connection. "Co" is not

specified in the standard, but is assumed to be small and to consist of parasitic
elements only. "Ro" and "Vo" are chosen so that the short-circuit current does
not exceed 500ma. The cable length is not specified in the standard; acceptable

operation is experienced with cables that are less than 25 feet in length.

Signal State Voltage Assignments - Voltages of -3v to -25v with respect to signal ground (pin 7) are
considered logic ’1’ (the marking condition), whereas voltages of +3v to +25v are considered logic ’0’
(the spacing condition). The range of voltages between -3v and +3v is considered a transition region for
which a signal state is not assigned.

Logic states are assigned to the voltage ranges shown here. Note that this is a
"negative logic" convention, which is the reverse of that used in most modern

digital designs.

Most contemporary applications will show an open-circuit signal voltage of -8 to -14 volts for logic ’1’
(mark), and +8 to +14 volts for logic ’0’ (space). Voltage magnitudes will be slightly less when the
generator and receiver are connected (when the DTE and DCE devices are connected with a cable).

IMPORTANT: If you insert an LED signal tester in an EIA232 circuit to view signal states,
the signal voltage may drop in magnitude to very near the minimum values of -3v for logic
’1’, and +3v for logic ’0’. Also note that some inexpensive EIA232 peripherals are powered
directly from the signal lines to avoid using a power supply of their own. Although this
usually works without problems, keep the cable short, and be aware that noise immunity will
be reduced.

Short-Circuit Tolerance - The generator is designed to withstand an open-circuit (unconnected)
condition, or short-circuit condition between its signal conductor and any other signal conductor,
including ground, without sustaining damage to itself or causing damage to any associated circuitry. The
receiver is also designed to accept any signal voltage within the range of ±25 volts without sustaining
damage.

CAUTION: Inductive loads or magnetically induced voltages resulting from long cables may
cause the received voltage to exceed the ±25-volt range momentarily during turn-on
transients or other abnormal conditions, possibly causing damage to the generator, receiver,
or both. Keep the cable length as short as possible, and avoid running the cable near
high-current switching loads like electric motors or relays.

Fail-Safe Signals - Four signals are intended to be fail-safe in that during power-off or
cable-disconnected conditions, they default to logic ’1’ (negative voltage). They are:

Request to Send - Default condition is deasserted.

Sec. Request to Send - Default condition is deasserted.

DTE Ready - Default condition is DTE not ready.

DCE Ready - Default condition is DCE not ready.
Note specifically that if the cable is connected but the power is off in the generator side, or if the cable is
disconnected, there should be adequate bias voltage in the receiver to keep the signal above +3v (logic
’0’) to ensure that the fail-safe requirement is met.

Schmitt triggers or other hysteresis devices may be used to enhance noise immunity in some designs, but
should never be adjusted to compromise the fail-safe requirement.

Signal Timing
Next Topic | Previous Topic | TOC

The EIA232 standard is applicable to data rates of up to 20,000 bits per second (the usual upper limit is
19,200 baud). Fixed baud rates are not set by the EIA232 standard. However, the commonly used values
are 300, 1200, 2400, 9600, and 19,200 baud. Other accepted values that are not often used are 110
(mechanical teletype machines), 600, and 4800 baud.

Changes in signal state from logic ’1’ to logic ’0’ or vice versa must abide by several requirements, as
follows:

1 - Signals that enter the transition region during a change of state must move through the
transition region to the opposite signal state without reversing direction or reentering.

2 - For control signals, the transit time through the transition region should be less than 1ms.

3 - For Data and Timing signals, the transit time through the transition region should be

a - less than 1ms for bit periods greater than 25ms,

b - 4% of the bit period for bit periods between 25ms and 125µs,

c - less than 5µs for bit periods less than 125µs.
The rise and fall times of data and timing signals ideally should be equal, but in
any case vary by no more than a factor of three.

An acceptable pulse (top) moves through the transition region quickly and
without hesitation or reversal. Defective pulses (bottom) could cause data errors.

4 - The slope of the rising and falling edges of a transition should not exceed 30v/µS. Rates
higher than this may induce crosstalk in adjacent conductors of a cable.

Note that neither the ASCII alphabet nor the asynchronous serial protocol that defines the start bit,
number of data bits, parity bit, and stop bit, is part of the EIA232 specification. For your reference, it is
discussed in the Data Communications Basics section of this web site.

Accepted Simplifications of the Standard
Previous Topic | TOC

The EIA232 document published by the Electronic Industries Association describes 14 permissible
configurations of the original 22-signal standard. Each configuration uses a subset of the 22 defined
signals, and serves a more limited communications requirement than that suggested by using all the
available 22-signals. Applications for transmit-only, receive-only, half-duplex operation, and similar
variations, are described. Unfortunately, connection to DCE devices other than modems is not
considered. Because many current serial interface applications involve direct device-to-device
connections, manufacturers do not have a standard reference when producing printers, plotters, print
spoolers, or other common peripherals. Consequently, you must acquire the service manual for each
peripheral device purchased to determine exactly which signals are utilized in its serial interface.

END

Return to TOC

(renamed the "EIA232 Standard" in the early 1990’s)

Written by Christopher E. Strangio
Copyright © 1993-1997 by CAMI Research Inc., Lexington, Massachusetts

Send Us Your Comments . . .

Contents

What is EIA232?
Likely Problems when Using an EIA232 Interface
Pin Assignments
Signal Definitions
Signal Ground and Shield
Primary Communications Channel
Secondary Communications Channel
Modem Status and Control Signals
Transmitter and Receiver Timing Signals
Channel Test Signals
Electrical Standards
Common Signal Ground
Signal Characteristics
Signal Timing
Accepted Simplifications of the Standard

Pin Description Index

References to EIA Publications

Back to CableEye Home Page

What is EIA232?
Next Topic | TOC

In the early 1960s, a standards committee, today known as the Electronic Industries Association,
developed a common interface standard for data communications equipment. At that time, data
communications was thought to mean digital data exchange between a centrally located mainframe
computer and a remote computer terminal, or possibly between two terminals without a computer
involved. These devices were linked by telephone voice lines, and consequently required a modem at
each end for signal translation. While simple in concept, the many opportunities for data error that occur
when transmitting data through an analog channel require a relatively complex design. It was thought
that a standard was needed first to ensure reliable communication, and second to enable the
interconnection of equipment produced by different manufacturers, thereby fostering the benefits of

mass production and competition. From these ideas, the RS232 standard was born. It specified signal
voltages, signal timing, signal function, a protocol for information exchange, and mechanical
connectors.

Over the 30+ years since this standard was developed, the Electronic Industries Association published
three modifications, the most recent being the EIA232E standard introduced in 1991. Besides changing
the name from RS232 to EIA232, some signal lines were renamed and various new ones were defined,
including a shield conductor.

Likely Problems when Using an EIA232 Interface
Next Topic | Previous Topic | TOC

During this 30-year-long, rapidly evolving period in electronics, manufacturers adopted simplified
versions of this interface for applications that were impossible to envision in the 1960s. Today, virtually
all contemporary serial interfaces are EIA232-like in their signal voltages, protocols, and connectors,
whether or not a modem is involved. Because no single "simplified" standard was agreed upon,
however, many slightly different protocols and cables were created that obligingly mate with any
EIA232 connector, but are incompatible with each other. Most of the difficulties you will encounter in
EIA232 interfacing include at least one of the following:

1 - The absence or misconnection of flow control (handshaking) signals, resulting in buffer
overflow or communications lock-up.

2 - Incorrect communications function (DTE versus DCE) for the cable in use, resulting in
the reversal of the Transmit and Receive data lines as well as one or more handshaking lines.

3 - Incorrect connector gender or pin configuration, preventing cable connectors from mating
properly.

Fortunately, EIA232 driver circuitry is highly tolerant of misconnections, and will usually survive a
drive signal being connected to ground, or two drive signals connected to each other. In any case, if the
serial interface between two devices is not operating correctly, disconnect the cable joining this
equipment until the problem is isolated.

Pin Assignments
Next Topic | Previous Topic | TOC

Go to DTE Pinout (looking into the computer’s serial connector)
Go to DCE Pinout (looking into the modem’s serial connector)

If the full EIA232 standard is implemented as defined, the equipment at the far end of the connection is
named the DTE device (Data Terminal Equipment, usually a computer or terminal), has a male DB25

connector, and utilizes 22 of the 25 available pins for signals or ground. Equipment at the near end of
the connection (the telephone line interface) is named the DCE device (Data Circuit-terminating
Equipment, usually a modem), has a female DB25 connector, and utilizes the same 22 available pins for
signals and ground. The cable linking DTE and DCE devices is a parallel straight-through cable with no
cross-overs or self-connects in the connector hoods. If all devices exactly followed this standard, all
cables would be identical, and there would be no chance that an incorrectly wired cable could be used.
This drawing shows the orientation and connector types for DTE and DCE devices:

EIA232 communication function and connector types for a personal computer
and modem. DCE devices are sometimes called "Data Communications
Equipment" instead of Data Circuit-terminating Equipment.

Here is the full EIA232 signal definition for the DTE device (usually the PC). The most commonly used
signals are shown in bold.

[back to Pin Assignments description]

Copyright © 1993-1997 CAMI Research Inc.

This shows the full EIA232 signal definition for the DCE device (usually the modem). The most
commonly used signals are shown in bold.

[back to Pin Assignments description]

Copyright © 1993-1997 CAMI Research Inc.

Many of the 22 signal lines in the EIA232 standard pertain to connections where the DCE device is a
modem, and then are used only when the software protocol employs them. For any DCE device that is
not a modem, or when two DTE devices are directly linked, far fewer signal lines are necessary.

You may have noticed in the pinout drawings that there is a secondary channel which includes a
duplicate set of flow-control signals. This secondary channel provides for management of the remote
modem, enabling baud rates to be changed on the fly, retransmission to be requested if a parity error is
detected, and other control functions. This secondary channel, when used, is typically set to operate at a
very low baud rate in comparison with the primary channel to ensure reliability in the control path. In
addition, it may operate as either a simplex, half-duplex, or full-duplex channel, depending on the
capabilities of the modem.

Transmitter and receiver timing signals (pins 15, 17, and 24) are used only for a synchronous

transmission protocol. For the standard asynchronous 8-bit protocol, external timing signals are
unnecessary.

IMPORTANT: Signal names that imply a direction, such as Transmit Data and Receive
Data, are named from the point of view of the DTE device. If the EIA232 standard were
strictly followed, these signals would have the same name for the same pin number on the
DCE side as well. Unfortunately, this is not done in practice by most engineers, probably
because no one can keep straight which side is DTE and which is DCE. As a result,
direction-sensitive signal names are changed at the DCE side to reflect their drive direction
at DCE. The following list gives the conventional usage of signal names:

Signal Definitions
Next Topic | Previous Topic | TOC

Signal functions in the EIA232 standard can be subdivided into six categories. These categories are
summarized below, after which each signal described.

1 - Signal ground and shield.

2 - Primary communications channel. This is used for data interchange, and includes flow
control signals.

3 - Secondary communications channel. When implemented, this is used for control of the
remote modem, requests for retransmission when errors occur, and governance over the
setup of the primary channel.

4 - Modem status and control signals. These signals indicate modem status and provide
intermediate checkpoints as the telephone voice channel is established.

5 - Transmitter and receiver timing signals. If a synchronous protocol is used, these signals

provide timing information for the transmitter and receiver, which may operate at different
baud rates.

6 - Channel test signals. Before data is exchanged, the channel may be tested for its integrity,
and the baud rate automatically adjusted to the maximum rate that the channel can support.

Signal Ground and Shield
Next Topic | Previous Topic | TOC

Pin 7, Pin 1, and the shell are included in this category. Cables provide separate paths for each, but
internal wiring often connects pin 1 and the cable shell/shield to signal ground on pin 7.

Pin 7 - Ground All signals are referenced to a common ground, as defined by the voltage on pin 7.
This conductor may or may not be connected to protective ground inside the DCE device. The existence
of a defined ground potential within the cable makes the EIA232 standard different from a balanced
differential voltage standard, such as EIA530, which provides far greater noise immunity.

Primary Communications Channel
Next Topic | Previous Topic | TOC

Pin 2 - Transmitted Data (TxD) This signal is active when data is transmitted from the DTE device to
the DCE device. When no data is transmitted, the signal is held in the mark condition (logic ’1’,
negative voltage).

NOTE: Pin 2 on the DCE device is commonly labeled "Received Data", although by the
EIA232 standard it should still be called Transmitted Data because the data is thought to be
destined for a remote DTE device.

Pin 3 - Received Data (RxD) This signal is active when the DTE device receives data from the DCE
device. When no data is transmitted, the signal is held in the mark condition (logic ’1’, negative
voltage).

NOTE: Pin 3 on the DCE device is commonly labeled "Transmitted Data", although by the
EIA232 standard it should still be called Received Data because the data is thought to arrive
from a remote DTE device.

Pin 4 - Request to Send (RTS) This signal is asserted (logic ’0’, positive voltage) to prepare the DCE
device for accepting transmitted data from the DTE device. Such preparation might include enabling the
receive circuits, or setting up the channel direction in half-duplex applications. When the DCE is ready,
it acknowledges by asserting Clear to Send.

NOTE: Pin 4 on the DCE device is commonly labeled "Clear to Send", although by the

EIA232 standard it should still be called Request to Send because the request is thought to be
destined for a remote DTE device.

Pin 5 - Clear to Send (CTS) This signal is asserted (logic ’0’, positive voltage) by the DCE device to
inform the DTE device that transmission may begin. RTS and CTS are commonly used as handshaking
signals to moderate the flow of data into the DCE device.

NOTE: Pin 5 on the DCE device is commonly labeled "Request to Send", although by the
EIA232 standard it should still be called Clear to Send because the signal is thought to
originate from a remote DTE device.

Secondary Communications Channel
Next Topic | Previous Topic | TOC

Pin 14 - Secondary Transmitted Data (STxD)

Pin 16 - Secondary Received Data (SRxD)

Pin 19 - Secondary Request to Send (SRTS)

Pin 13 - Secondary Clear to Send (SCTS)

These signals are equivalent to the corresponding signals in the primary communications channel. The
baud rate, however, is typically much slower in the secondary channel for increased reliability.

Modem Status and Control Signals
Next Topic | Previous Topic | TOC

Pin 6 - DCE Ready (DSR) When originating from a modem, this signal is asserted (logic ’0’, positive
voltage) when the following three conditions are all satisfied:

1 - The modem is connected to an active telephone line that is "off-hook";

2 - The modem is in data mode, not voice or dialing mode; and

3 - The modem has completed dialing or call setup functions and is generating an answer
tone.

If the line goes "off-hook", a fault condition is detected, or a voice connection is established, the DCE
Ready signal is deasserted (logic ’1’, negative voltage).

IMPORTANT: If DCE Ready originates from a device other than a modem, it may be

asserted to indicate that the device is turned on and ready to function, or it may not be used
at all. If unused, DCE Ready should be permanently asserted (logic ’0’, positive voltage)
within the DCE device or by use of a self-connect jumper in the cable. Alternatively, the
DTE device may be programmed to ignore this signal.

Pin 20 - DTE Ready (DTR) This signal is asserted (logic ’0’, positive voltage) by the DTE device
when it wishes to open a communications channel. If the DCE device is a modem, the assertion of DTE
Ready prepares the modem to be connected to the telephone circuit, and, once connected, maintains the
connection. When DTE Ready is deasserted (logic ’1’, negative voltage), the modem is switched to
"on-hook" to terminate the connection.

IMPORTANT: If the DCE device is not a modem, it may require DTE Ready to be asserted
before the device can be used, or it may ignore DTE Ready altogether. If the DCE device
(for example, a printer) is not responding, confirm that DTE Ready is asserted before you
search for other explanations.

Pin 8 - Received Line Signal Detector (CD) (also called carrier detect) This signal is relevant when
the DCE device is a modem. It is asserted (logic ’0’, positive voltage) by the modem when the telephone
line is "off-hook", a connection has been established, and an answer tone is being received from the
remote modem. The signal is deasserted when no answer tone is being received, or when the answer
tone is of inadequate quality to meet the local modem’s requirements (perhaps due to a noisy channel).

Pin 12 - Secondary Received Line Signal Detector (SCD) This signal is equivalent to the Received
Line Signal Detector (pin 8), but refers to the secondary channel.

Pin 22 - Ring Indicator (RI) This signal is relevant when the DCE device is a modem, and is asserted
(logic ’0’, positive voltage) when a ringing signal is being received from the telephone line. The
assertion time of this signal will approximately equal the duration of the ring signal, and it will be
deasserted between rings or when no ringing is present.

Pin 23 - Data Signal Rate Selector This signal may originate either in the DTE or DCE devices (but
not both), and is used to select one of two prearranged baud rates. The asserted condition (logic ’0’,
positive voltage) selects the higher baud rate.

Transmitter and Receiver Timing Signals
Next Topic | Previous Topic | TOC

Pin 15 - Transmitter Signal Element Timing (TC) (also called Transmitter Clock) This signal is
relevant only when the DCE device is a modem and is operating with a synchronous protocol. The
modem generates this clock signal to control exactly the rate at which data is sent on Transmitted Data
(pin 2) from the DTE device to the DCE device. The logic ’1’ to logic ’0’ (negative voltage to positive
voltage) transition on this line causes a corresponding transition to the next data element on the
Transmitted Data line. The modem generates this signal continuously, except when it is performing
internal diagnostic functions.

Pin 17 - Receiver Signal Element Timing (RC) (also called Receiver Clock) This signal is similar to
TC described above, except that it provides timing information for the DTE receiver.

Pin 24 - Transmitter Signal Element Timing (ETC) (also called External Transmitter Clock) Timing
signals are provided by the DTE device for use by a modem. This signal is used only when TC and RC
(pins 15 and 17) are not in use. The logic ’1’ to logic ’0’ transition (negative voltage to positive voltage)
indicates the time-center of the data element. Timing signals will be provided whenever the DTE is
turned on, regardless of other signal conditions.

Channel Test Signals
Next Topic | Previous Topic | TOC

Pin 18 - Local Loopback (LL) This signal is generated by the DTE device and is used to place the
modem into a test state. When Local Loopback is asserted (logic ’0’, positive voltage), the modem
redirects its modulated output signal, which is normally fed into the telephone line, back into its receive
circuitry. This enables data generated by the DTE to be echoed back through the local modem to check
the condition of the modem circuitry. The modem asserts its Test Mode signal on Pin 25 to acknowledge
that it has been placed in local loopback condition.

Pin 21 - Remote Loopback (RL) This signal is generated by the DTE device and is used to place the
remote modem into a test state. When Remote Loopback is asserted (logic ’0’, positive voltage), the
remote modem redirects its received data back to its transmitted data input, thereby remodulating the
received data and returning it to its source. When the DTE initiates such a test, transmitted data is passed
through the local modem, the telephone line, the remote modem, and back, to exercise the channel and
confirm its integrity. The remote modem signals the local modem to assert Test Mode on pin 25 when
the remote loopback test is underway.

Pin 25 - Test Mode (TM) This signal is relevant only when the DCE device is a modem. When
asserted (logic ’0’, positive voltage), it indicates that the modem is in a Local Loopback or Remote
Loopback condition. Other internal self-test conditions may also cause Test Mode to be asserted, and
depend on the modem and the network to which it is attached.

Electrical Standards
Next Topic | Previous Topic | TOC

The EIA232 standard uses negative, bipolar logic in which a negative voltage signal represents logic ’1’,
and positive voltage represents logic ’0’. This probably originated with the pre-RS232 current loop
standard used in 1950s-vintage teletype machines in which a flowing current (and hence a low voltage)
represents logic ’1’. Be aware that the negative logic assignment of EIA232 is the reverse of that found
in most modern digital circuit designs. See the inside rear cover of the CableEye manual for a
comparison.

Common Signal Ground
Next Topic | Previous Topic | TOC

The EIA232 standard includes a common ground reference on Pin 7, and is frequently joined to Pin 1
and a circular shield that surrounds all 25 cable conductors. Data, timing, and control signal voltages are
measured with respect to this common ground. EIA232 cannot be used in applications where the
equipment on opposite ends of the connection must be electrically isolated.

NOTE: optical isolators may be used to achieve ground isolation, however, this option is not
mentioned or included in the EIA232 specification.

Signal Characteristics
Next Topic | Previous Topic | TOC

Equivalent Circuit - All signal lines, regardless of whether they provide data, timing, or control
information, may be represented by the electrical equivalent circuit shown here:

This is the equivalent circuit for an EIA232 signal line and applies to signals
originating at either the DTE or DCE side of the connection. "Co" is not

specified in the standard, but is assumed to be small and to consist of parasitic
elements only. "Ro" and "Vo" are chosen so that the short-circuit current does
not exceed 500ma. The cable length is not specified in the standard; acceptable

operation is experienced with cables that are less than 25 feet in length.

Signal State Voltage Assignments - Voltages of -3v to -25v with respect to signal ground (pin 7) are
considered logic ’1’ (the marking condition), whereas voltages of +3v to +25v are considered logic ’0’
(the spacing condition). The range of voltages between -3v and +3v is considered a transition region for
which a signal state is not assigned.

Logic states are assigned to the voltage ranges shown here. Note that this is a
"negative logic" convention, which is the reverse of that used in most modern

digital designs.

Most contemporary applications will show an open-circuit signal voltage of -8 to -14 volts for logic ’1’
(mark), and +8 to +14 volts for logic ’0’ (space). Voltage magnitudes will be slightly less when the
generator and receiver are connected (when the DTE and DCE devices are connected with a cable).

IMPORTANT: If you insert an LED signal tester in an EIA232 circuit to view signal states,
the signal voltage may drop in magnitude to very near the minimum values of ­p;3v for
logic ’1’, and +3v for logic ’0’. Also note that some inexpensive EIA232 peripherals are
powered directly from the signal lines to avoid using a power supply of their own. Although
this usually works without problems, keep the cable short, and be aware that noise immunity
will be reduced.

Short-Circuit Tolerance - The generator is designed to withstand an open-circuit (unconnected)
condition, or short-circuit condition between its signal conductor and any other signal conductor,
including ground, without sustaining damage to itself or causing damage to any associated circuitry. The
receiver is also designed to accept any signal voltage within the range of ±25 volts without sustaining
damage.

CAUTION: Inductive loads or magnetically induced voltages resulting from long cables may
cause the received voltage to exceed the ±25-volt range momentarily during turn-on
transients or other abnormal conditions, possibly causing damage to the generator, receiver,
or both. Keep the cable length as short as possible, and avoid running the cable near
high-current switching loads like electric motors or relays.

Fail-Safe Signals - Four signals are intended to be fail-safe in that during power-off or
cable-disconnected conditions, they default to logic ’1’ (negative voltage). They are:

Request to Send - Default condition is deasserted.

Sec. Request to Send - Default condition is deasserted.

DTE Ready - Default condition is DTE not ready.

DCE Ready - Default condition is DCE not ready.
Note specifically that if the cable is connected but the power is off in the generator side, or if the cable is
disconnected, there should be adequate bias voltage in the receiver to keep the signal above +3v (logic
’0’) to ensure that the fail-safe requirement is met.

Schmitt triggers or other hysteresis devices may be used to enhance noise immunity in some designs, but
should never be adjusted to compromise the fail-safe requirement.

Signal Timing
Next Topic | Previous Topic | TOC

The EIA232 standard is applicable to data rates of up to 20,000 bits per second (the usual upper limit is
19,200 baud). Fixed baud rates are not set by the EIA232 standard. However, the commonly used values
are 300, 1200, 2400, 9600, and 19,200 baud. Other accepted values that are not often used are 110
(mechanical teletype machines), 600, and 4800 baud.

Changes in signal state from logic ’1’ to logic ’0’ or vice versa must abide by several requirements, as
follows:

1 - Signals that enter the transition region during a change of state must move through the
transition region to the opposite signal state without reversing direction or reentering.

2 - For control signals, the transit time through the transition region should be less than 1ms.

3 - For Data and Timing signals, the transit time through the transition region should be

a - less than 1ms for bit periods greater than 25ms,

b - 4% of the bit period for bit periods between 25ms and 125µs,

c - less than 5µs for bit periods less than 125µs.
The rise and fall times of data and timing signals ideally should be equal, but in
any case vary by no more than a factor of three.

An acceptable pulse (top) moves through the transition region quickly and
without hesitation or reversal. Defective pulses (bottom) could cause data errors.

4 - The slope of the rising and falling edges of a transition should not exceed 30v/µS. Rates
higher than this may induce crosstalk in adjacent conductors of a cable.

Note that neither the ASCII alphabet nor the asynchronous serial protocol that defines the start bit,
number of data bits, parity bit, and stop bit, is part of the EIA232 specification. For your reference, it is
discussed in the Data Communications Basics section of this web site.

Accepted Simplifications of the Standard
Previous Topic | TOC

The EIA232 document published by the Electronic Industries Association describes 14 permissible
configurations of the original 22-signal standard. Each configuration uses a subset of the 22 defined
signals, and serves a more limited communications requirement than that suggested by using all the
available 22-signals. Applications for transmit-only, receive-only, half-duplex operation, and similar
variations, are described. Unfortunately, connection to DCE devices other than modems is not
considered. Because many current serial interface applications involve direct device-to-device
connections, manufacturers do not have a standard reference when producing printers, plotters, print
spoolers, or other common peripherals. Consequently, you must acquire the service manual for each
peripheral device purchased to determine exactly which signals are utilized in its serial interface.

END

Return to TOC

SDTP, PPP Serial Data Transport Protocol

Description:

Protocol suite:PPP.

Type: PPP network layer protocol.

PPP protocol: 0x0049

Working groups:pppext, Point-to-Point Protocol Extensions.

Serial Data Transport Protocol (SDTP) is used for synchronous serial data compression over a PPP link.

Before any SDTP packets may be communicated, PPP must reach the Network-Layer Protocol phase,
and the SDTP Control Protocol must reach the Opened state.

The maximum length of the SDTP datagram transmitted over a PPP link is limited only by the
negotiated Maximum-Frame-Size and the maximum length of the Information field of a PPP
encapsulated packet. Note that if compression is used on the PPP link, this the maximum length of the
SDTP datagram may be larger or smaller than the maximum length of the Information field of a PPP
encapsulated packet, depending on the particular compression algorithm and protocol used.

RFC 1963, pages 1 - 3:

This document describes a new Network level protocol (from the PPP point of view), PPP
Serial Data Transport Protocol, that provides encapsulation and an associated Serial Data
Control Protocol (SDCP) for transporting serial data streams over a PPP link. This protocol
was developed for the purpose of using PPP’s many features to provide a standard method
for synchronous data compression. The encapsulation uses a header structure based on that
of the ITU-T Recommendation V.120.

This document is a product of the TR30.1 ad hoc committee on compression of synchronous
data. It represents a component of a proposal to use PPP to provide compression of
synchronous data in DSU/CSUs.

In addition to providing support for multi-protocol datagrams, the Point-to-Point Protocol
(PPP) has defined an effective and robust negotiating mechanism that can be used on point
to point links. When used in conjunction with the PPP Compression Control Protocol and
one of the PPP Compression Protocols, PPP provides an interoperable method of employing
data compression on a point-to- point link.

This document provides a PPP encapsulation for serial data, specifying a transport protocol,
PPP Serial Data Transport Protocol (PPP-SDTP), and an associated control protocol, PPP
Serial Data Control Protocol (PPP-SDCP). When these protocols are added to above
mentioned PPP protocols, PPP can be used to provide compression of serial data on a
point-to-point link.

This first edition of PPP-SDTP/SDCP covers HDLC-like synchronous serial data and
asynchronous serial data. It does this by using a terminal adaption header based on that of
ITU-T Recommendation V.120. Support may be added in the future for other synchronous
protocols as the marketplace demands.

The V.120 terminal adaption header allows transported data frames to be split over several
packets, supports the transport of DTE port idle and error information, and optionally
supports the transport of DTE control state information.

In addition to the V.120 Header, fields can be added to the packet format through negotiation
to provide support for features not included in the V.120 header. The extra fields are: a
Length Field, which is used to distinguish packets in compound frames, and a Port field,
which is used to provide multi-port multiplexing capability. The protocol also allows
reserved bits in the V.120 header to be used to transport non-octet aligned frames and to
provide a flow control mechanism.

To provide these features, PPP-SDTP permits a single frame format to be selected from
several possible formats by using PPP-SDCP negotiation. The terminal adaption header can
be either fixed length or variable length, to allow either simplicity or flexibility.

The default frame format places the terminal adaption header at the end of the packet. This
permits optimal transmitter timelines when user frames are segmented and compression is
also used in conjunction with this protocol.

Packet format:

Glossary:

V.120.
CCITT Recommendation V.120 (09/92), "Support by an ISDN of Data Terminal Equipment with
V-Series Type Interfaces with Provision for Statistical Multiplexing", 1993.

RFCs:

[RFC 1963] PPP Serial Data Transport Protocol (SDTP).

Disclaimer: This description is completely unofficial. Most of the information presented here is discovered by
me, Eugene Crosser, while snooping the serial line and by trial and error. I never had an official protocol
description, have never seen any related software source code, and have never done reverse engineering of any
related software. This description may be incomplete, inaccurate or completely wrong. You are warned.

Some information is taken from ‘camediaplay’ package by Jun-ichiro Itoh <itojun@itojun.org>, from the
findings of Thierry Bousch <bousch%linotte.uucp@topo.math.u-psud.fr> TsuruZoh Tachibanaya
<tsuruzoh@butaman.ne.jp> and from other (open) sources and not checked by me.

Serial Protocol of Some Digital Cameras
Several models of digital cameras, namely Epson, Sanyo, Agfa and Olympus cameras, seem to use the
same protocol for communication with the host. Follows the description of the high-level protocol they
use over the serial line.

Protocol Basics

The host and the camera exchange with data packets and individual bytes. Serial line paramaters used
are: 8bit, no parity. No flow control is used. All arithmetic data is transmitted least significant byte first
("little endian").

Protocol Elements

The elementary units of the protocol are:

Initialization Byte NUL 0x00

Action Complete NotificationENQ 0x05

Positive Achnowledgement ACK 0x06

Unable to Execute CommandDC1 0x11

Negative Acknowledgement,
also Camera Signature NAK 0x15

Packet Variable length sequence of bytes

Termination Byte 0xff

Packet structure

The packet has the following structure:

Offset Length Meaning

0 1 Packet type

1 1 Packet subtype/sequence

2 2 Length of data

4 variableData

-2 2 checksum

Known packet types are:

Type Description

0x02 Data packet that is not last in sequence

0x03 Data packet that is last in sequence

0x1b Command packet

Data packets that are sent in responce to a single command are numbered starting from zero. If all
requested data fits in one packet, it has type 0x03 and sequence 0.

Command packet has subtype 0x43 or 0x53. Only the first command packet in a session has subtype
0x53.

Maximum length of data field in a packet is 2048 bytes, which yields in 2054 total packet length.

Checksum is a simple 16 bit arithmetic sum of all bytes in the data field. As already mentioned above,
length and checksum values are transmitted least significant byte first.

Flow of Control

A communication session flow is as follows:

Host Camera

Port speed set to 19200 baud

Host sends init byte 0x00

Camera responds with signature 0x15

Host sends command packet with subtype
0x53 and "set speed" command

Camera sends ACK 0x06

Port speed set to the new value

Host sends command

Camera responds with either ACK plus optionally "action
taken" notifier or data packet sequence

Host sends ACK to every data packet

... Command - reply cycle repeated ...

Camera sends 0xff and resets after a few seconds (value is
model-dependant) of inactivity

If the camera does not respond to a command in reasonable time, or responds with a NAK, the command
can be resent. If the camera does not provide a complete data packet in reasonable time, or the data
packet is corrupt (checksum does not match), the host can request resending of the packet by sending
NAK instead of ACK.

Command format and codes

Command is a sequence of bytes sent in the data field of a command packet. Command format is as
follows:

Offset Length Description

0 1 Command code

1 1 Register number or subcode

2 variableOptional argument

Five command codes are known:

Code Argument Description

0 int32 Set value of integer register

1 none Read value of integer register

2 vdata Take action unrelated to registers

3 vdata Set value of vdata register

4 none Read value of vdata register

Commands 0 and 3 are replied with a single ACK 0x06. Command 2 is replied with an ACK 0x06
followed by an "action complete" notifier 0x05. Commands 1 and 4 are replied with a sequence of data

packets, each of them must be ACK’ed by the host.

Command 0 must be issued with a 4 byte argument containg the new value for the register (bytes in
"LSB first" order). Command 2 typically is issued with a single zero byte as an argument. Command 3 is
issued with an argument of variable number of bytes. If this is a printable string, it should not include
the trailing zero byte.

Camera replies to the command 1 with a single data packet containing 4 bytes of a 32bit integer (in
"LSB first" order). Camera replies to the command 4 with a sequence of data packets with variable
number of data bytes. Note that if a printable string is returned, it is terminated with a zero byte, and
thus may be safely printed or otherwise treated as a normal C language character string.

Registers

The following registers are known (read/writablity info is inaccurate):

No. Type R/W Description

1 int32 R/W Resolution: 1 - Std, 2 - Hi, 3 - Ext, other values possible

2 int32 R/W Clock in UNIX time_t format

3 int32 R/W Shutter speed (microseconds), 0 - auto

4 int32 W Current frame number (or animation number if hi order byte is 0xff)

5 int32 R/W Aperture: 0 - Auto, 1 - Low, 2 - Med, 3 - ?, 4 - Hi

6 int32 R/W Color mode: 1 - Color, 2 - B/W

7 int32 R/W Flash mode: 0 - Auto, 1 - Force, 2 - Off, 3 - Anti RedEye, 4 - Slow sync

8 int32 R/W Unknown (128)

9 int32 R/W Unknown (128)

10 int32 R No. of frames in current folder

11 int32 R No. of frames left

12 int32 R Length of current frame *

13 int32 R Length of current thumbnail *

14 vdataR Current frame data *

15 vdataR Current thumbnail data *

16 int32 R Battery capacity percentage

17 int32 R/W Communication speed 1 - 9600 .. 5 - 115200, 6 - 230400, 256 - 9600 .. 264 -
911600 (sync?)

18 int32 R Unknown (1)

19 int32 R/W Bright/Contrast: 0 - Normal, 1 - Contrast+, 2 - Contrast-, 3 - Brightnes+, 4 -
Brightnes-

20 int32 R/W White balance: 0 - Auto, 1 - Sunny, 2 - Incandescent, 3 - Fluorescent, 5 - Flash, 6-
White preset, 255 - Cloudy

21 vdataR/W Unused

22 vdataR/W Camera I.D.

23 int32 R/W Autoshut on host timer (seconds)

24 int32 R/W Autoshut in field timer (seconds)

25 vdataR/W Serial No. (string)

26 vdataR Version

27 vdataR/W Model

28 int32 R Available memory left

29 vdataR/W Upload image data to this register

30 int32 W LED: 0 - Off, 1 - On, 2 - Blink

31 vdataR Unknown ("\0")

32 int32 R Put "magic spell" 0x0FEC000E here before uploading image data

33 int32 R/W Focus mode: 1 - Macro, 2 - Normal, 3 - Infinity/fisheye

34 int32 R Operation mode: 1 - Off, 2 - Record, 3-Play, 6-Thumbnail

35 int32 R/W LCD brightness 1 to 7

36 int32 R Unknown (3)

37 vdataR Unknown ("\0")

38 int32 R LCD autoshut timer (seconds)

39 int32 R Protection state of current frame *

40 int32 R True No. of frames taken

41 int32 R/W LCD date format: 1 - ’YY MM DD, 2 - DD MM ’HH

42 vdataR Unknown ("")

43 vdataR

Audio data description block *
0: expanded .wav length
1: compressed .wav length
3: Unknown (0)
4: Unknown (0)
5: Unknown (0)
6: Unknown (0)
7: Unknown (0)

44 vdataR Audio data *

45 vdataR Unknown ("")

46 vdataR

Camera summary data: 32 bytes with copies of 8 other registers
0: Reg 1 (Resolution)
1: Reg 35 (LCD brightness) or Reg 7 (Flash mode)
2: Reg 10 (Frames taken) or Unknown
3: Unknown (0) or Unknown
4: Unknown (0) or Reg 16 (Battery capacity)
5: Unknown (0) or Reg 10 (Frames taken)
6: Unknown (0) or Reg 11 (Frames left)
7: Number of animations taken

47 vdataR

Picture summary data: 32 bytes or 8 int32’s *
0: Hi order byte: unknown, next 3 bytes: Length of current image
1: Length of current thumbnail
2: Audio data length (expanded)
3: Resolution
4: Protection state
5: TimeDate
6: Unknown (0)
7: Animation type: 1 - 10ms, 2 - 20ms

48 vdataR Manufacturer

49 vdataR Unknown ("")

50 int32 R Unknown (0)

51 int32 R/W Card detected: 1 - No, 2 - Yes

52 vdataR/W Unknown ("")

53 int32 R/W Language: 3 - english, 4 - french, 5 - german, 6 - italian, 8 - spanish, 10 - dutch

54-59vdataR Unknown ("")

60 int32 R True No. of frames taken

61-68vdataR Unknown ("")

69 vdataR

Exposure Compensation 8 bytes
0: compensation value -20 to +20
1: 0
2: 0
3: 0
4: 10
5: 0
6: 0
7: 0

70 int32 R/W Exp. meter: 2 - Center weighted, 3 - Spot, 5 - Multi element matrix

71 vdataR/W

Effective zoom in tenths of millimeters: 8 bytes
0: LSB
1: MSB
2: 0
3: 0
4: 10
5: 0
6: 0
7: 0

72 int32 R/W Bitmap: 1 - AEL/WBL, 2 - Fisheye, 4 - Wide, 8 - Manual zoom, 16 - B/W, 256 -
1.25x, 512 - 1.6x, 768 - 2.0x, 1024 - 2.5x, 1280 - off

73-76vdataR Unknown ("")

77 int32 W Size of data packet from camera
(default 0x800)

78 vdataR Unknown ("")

79 vdataR Filename of current frame *

80-81vdataR Unknown ("")

82 int32 W Unknown (enable folder features? Write 60 here)

83 int32 R/W

Folder navigation
When read, return number of folders on the card.
When written without data, reset folder system (?)
Or select current folder by its number

84 vdataR/W Current folder name (may read or set)

85 vdataR Unknown ("")

86 int32 R/W Digital zoom; 0 - 1X, otherwise zoom factor x 100 (i.e. in percent)

87-90vdataR Unknown ("")

91 vdataR Current folder I.D. and name

* Note: Marked registers only become useful for reading after setting register 4. If value of 0 assigned to
register 4 after doing action 5, subsequent retrieval of picture data gives the "live preview".

For command 2, the second byte is action code not register number. The following action codes are
known:

Code Argument Description

0 single zero byteErase last picure

1 single zero byteErase all picures (but not animations)

2 single zero byteTake picture

4 single zero byteFinish session immediately

5 single zero byteTake preview snapshot (retreivable as frame zero)

6 single byte

Calibration / testing. Arg value:
1 Calibrate autofocus
3 Test zoom/exposure
4-6 Store 0 in Reg 32
9 Load LCD Brightness (0-31) from Reg 32
10 Load LCD size (25 for Nikon Coolpix 950) from Reg 32
11 LCD Saturation (0-32) from Reg 32
13 LCD Red-Green (0-32) from Reg 32
14 LCD Blue (0-32) from Reg 32
15 Store -1 in Reg 32
16 Multi shot (locks up if lcd is on)
17 Take picture
18 Store -1 in Reg 32
20-23 locks up if lcd is on
24-255 Store -1 in Reg 32

7 single zero byteErase current frame *

8 single byte

Switch LCD mode. Arg value:
1 - Off
2 - Record
3 - Play (show current frame fullscreen)
4 - preview thumbnails (?)
5 - Thumbnail view (smaller?)
6 - Thumbnail view (larger?)
7 - Next
8 - Previous

9 single byte Set protection state of current frame to the value of parameter (binary 0 or 1)*

11 single zero byteStore freshly uploaded image into NVRAM (see appendix A)

12 single byte

LCD test. Arg value:
0 - white
1 - gray
2 - black
3 - red
4 - green
5 - blue
6 - test pattern

* Note: actions 7 and 9 only useful after setting register 0x04.

Appendix A

Date: Sun, 14 Jul 2002 01:28:39 +0200 (CEST)
From: =?iso-8859-1?Q?Peter_=C5strand?= <astrand(at)lysator.liu.se>
To: allyn(at)fratkin.com, <wolfgang(at)charlotte.wsrcc.com>, <crosser(at)average.org
Subject: Upload on Olympus C-860L

FYI.

Tonight, I’ve been struggling with uploading arbitrary pictures to my
Olympus C-860L. I’ve finally found out that for the camera to accept the
picture, to two conditions must be met:

1) The subsampling must be 2x1, 1x1, 1x1
2) The EXIF info must be just like the pictures the camera itself
produces.

So, I’ve made a small script to fix this. Feel free to include it in FAQs
and/or photopc dists.

/more/data/pics/olympus-reference-pic.jpg is just some picture taken with
the camera.

photopc-upload-all:

#!/bin/sh

TMPFILE=‘mktemp /tmp/photopc-upload.XXXXXX‘ || exit 1

for file in $@; do
 echo Converting $file...
 djpeg $file | cjpeg -sample 2x1 > $TMPFILE
 jhead -te /more/data/pics/olympus-reference-pic.jpg $TMPFILE
 echo Uploading $file...
 photopc upload $TMPFILE
 sleep 2;
done

rm -f $TMPFILE

--
/Peter Åstrand <astrand(at)lysator.liu.se>

Appendix B

Some Nikon models support an extension to the protocol described above, specifically designed for
remote control units. This protocol allows to control zoom, emulate half-depress of the shutter release
button, bulb operation and possibly more. <vladimir.vyskocil(at)wanadoo.fr> compiled a partial
description of this protocol, available here.

Please mail your corrections/additions to <crosser at average dot org>
See http://photopc.sourceforge.net/ for possible updates.

Documentation MATLAB External Interfaces/API

External Interfaces/API

Serial Data Format

The serial data format includes one start bit, between five and eight data bits, and one stop bit. A parity
bit and an additional stop bit might be included in the format as well. The diagram below illustrates the
serial data format.

The format for serial port data is often expressed using the following notation

number of data bits - parity type - number of stop bits

For example, 8-N-1 is interpreted as eight data bits, no parity bit, and one stop bit, while 7-E-2 is
interpreted as seven data bits, even parity, and two stop bits.

The data bits are often referred to as a character because these bits usually represent an ASCII character.
The remaining bits are called framing bits because they frame the data bits.

Bytes Versus Values

The collection of bits that comprise the serial data format is called a byte. At first, this term might seem
inaccurate because a byte is 8 bits and the serial data format can range between 7 bits and 12 bits.
However, when serial data is stored on your computer, the framing bits are stripped away, and only the
data bits are retained. Moreover, eight data bits are always used regardless of the number of data bits
specified for transmission, with the unused bits assigned a value of 0.

When reading or writing data, you might need to specify a value, which can consist of one or more
bytes. For example, if you read one value from a device using the int32 format, then that value consists
of four bytes. For more information about reading and writing values, refer to Writing and Reading
Data.

Synchronous and Asynchronous Communication

The RS-232 standard supports two types of communication protocols: synchronous and asynchronous.

Using the synchronous protocol, all transmitted bits are synchronized to a common clock signal. The
two devices initially synchronize themselves to each other, and then continually send characters to stay
synchronized. Even when actual data is not really being sent, a constant flow of bits allows each device
to know where the other is at any given time. That is, each bit that is sent is either actual data or an idle
character. Synchronous communications allows faster data transfer rates than asynchronous methods,
because additional bits to mark the beginning and end of each data byte are not required.

Using the asynchronous protocol, each device uses its own internal clock resulting in bytes that are
transferred at arbitrary times. So, instead of using time as a way to synchronize the bits, the data format
is used.

In particular, the data transmission is synchronized using the start bit of the word, while one or more
stop bits indicate the end of the word. The requirement to send these additional bits causes asynchronous
communications to be slightly slower than synchronous. However, it has the advantage that the
processor does not have to deal with the additional idle characters. Most serial ports operate
asynchronously.

Note When used in this guide, the terms "synchronous" and "asynchronous" refer to whether
read or write operations block access to the MATLAB command line. Refer to Controlling
Access to the MATLAB Command Line for more information.

How Are the Bits Transmitted?

By definition, serial data is transmitted one bit at a time. The order in which the bits are transmitted is
given below:

1. The start bit is transmitted with a value of 0.
2. The data bits are transmitted. The first data bit corresponds to the least significant bit (LSB), while

the last data bit corresponds to the most significant bit (MSB).
3. The parity bit (if defined) is transmitted.
4. One or two stop bits are transmitted, each with a value of 1.

The number of bits transferred per second is given by the baud rate. The transferred bits include the start
bit, the data bits, the parity bit (if defined), and the stop bits.

Start and Stop Bits

As described in Synchronous and Asynchronous Communication, most serial ports operate
asynchronously. This means that the transmitted byte must be identified by start and stop bits. The start
bit indicates when the data byte is about to begin and the stop bit(s) indicates when the data byte has
been transferred. The process of identifying bytes with the serial data format follows these steps:

1. When a serial port pin is idle (not transmitting data), then it is in an "on" state.
2. When data is about to be transmitted, the serial port pin switches to an "off" state due to the start

bit.
3. The serial port pin switches back to an "on" state due to the stop bit(s). This indicates the end of

the byte.

Data Bits

The data bits transferred through a serial port might represent device commands, sensor readings, error
messages, and so on. The data can be transferred as either binary data or ASCII data.

Most serial ports use between five and eight data bits. Binary data is typically transmitted as eight bits.
Text-based data is transmitted as either seven bits or eight bits. If the data is based on the ASCII
character set, then a minimum of seven bits is required because there are 27 or 128 distinct characters. If
an eighth bit is used, it must have a value of 0. If the data is based on the extended ASCII character set,
then eight bits must be used because there are 28 or 256 distinct characters.

The Parity Bit

The parity bit provides simple error (parity) checking for the transmitted data. The types of parity
checking are given below.

Table 9-2: Parity Types

Parity Type Description

Even The data bits plus the parity bit result in an even number of 1’s.

Mark The parity bit is always 1.

Odd The data bits plus the parity bit result in an odd number of 1’s.

Space The parity bit is always 0.

Mark and space parity checking are seldom used because they offer minimal error detection. You might
choose to not use parity checking at all.

The parity checking process follows these steps:

1. The transmitting device sets the parity bit to 0 or to 1 depending on the data bit values and the type
of parity checking selected.

2. The receiving device checks if the parity bit is consistent with the transmitted data. If it is, then the
data bits are accepted. If it is not, then an error is returned.

Note Parity checking can detect only 1-bit errors. Multiple-bit errors can appear as valid data.

For example, suppose the data bits 01110001 are transmitted to your computer. If even parity is selected,
then the parity bit is set to 0 by the transmitting device to produce an even number of 1’s. If odd parity is
selected, then the parity bit is set to 1 by the transmitting device to produce an odd number of 1’s.

 Serial Port Signals and Pin Assignments Finding Serial Port Information for Your Platform

 The MathWorks, Inc. Trademarks Privacy Policy

Connectors

Serial mouse

Pin Description
 1 DCD Data carried detect
 2 RD Receive data
 3 TD Transmit data
 4 DTR Data terminal ready
 5 SG Signal ground
 6 DSR Data set ready
 7 RTS Request to send
 8 CTS Clear to send
 9 Ring

Image Dimensions in Common Usage
Collated by Paul Bourke

May 2000

Dimensions Ratio Comments

8x8 1

16x16 1 Macintosh cursor size
Supported by Windows icon format

32x32 1 Macintosh icon size
Supported by Windows icon format

64x64 1 Supported by Windows icon format

88x31 2.8387 WWW micro banner

128x96 1 1/3

160x120 1 1/3 NTSC 13" 1/16th
CuSeeMe small image size
Considered a "small" QuickTime movie

160x144 1.1111

176x144 1.2222

180x132 1.3636

180x135 1 1/3

192x144 1 1/3 PAL 1/16

234x60 3.9 WWW small banner

256x192 1 1/3 10"/12" 1/4

320x200 1.6 Called CGA, IBM PS/2

320x240 1 1/3 NTSC 13" 1/4
CuSeeMe image size
Considered a "large" QuickTime movie

320x288 1.1111

320x400 0.8 Amigo

352x288 1.2222 PAL Video CD

352x240 1.46666 NTSC Video CD

384x256 1.5 Photo CD

384x288 1 1/3 PAL 1/4

392x72 5.444444 WWW banner

400x300 1 1/3

460x55 8.36363636 WWW banner

468x32 14.625 WWW banner

468x60 7.8 WWW banner

512x342 1.497 Original Macintosh screen

512x384 1 1/3

544x372 1.4623 WebTV image size

640x350 1.82857 Called EGA, IBM

640x480 1 1/3 NTSC full
Called PGA, IBM VGA

640x576 1.1111

704x576 1.22222 Full image size from ASUS video capture
with TNT2

720x350 2.05714286 Called MDA, IBM / VESA

720x400 1.8 Called MCGA, IBM/VESA

720x480 1.5 Format 480p. NTSC video format as used
by DPS PVR video hardware.
NTSC DV
SDTV

720x483 1.49068323 SDTV

720x484 1.48760331 Alternative Media-100 NTSC, eg:
Media-100

720x486 40/27 CCIR 601 NTSC

720x540 1 1/3 CCIR 601 NTSC Sq

720x576 1.25 CCIR 601 DV PAL and DV SECAM

729x348 2.094828 Hercules graphics

768x576
Subtract 75 from left/right and
55 top/bottom for the PAL
"safe" area

1 1/3 CCIR 601 PAL full

800x600 1 1/3 Called SVGA resolution. Used in the first
generation of LCD projectors (their native
resolution).

832x624 1 1/3 Macintosh

856x480 1.78333333

896x600 1.49333333

960x720 1 1/3 Non standard digital TV format supported
by some suppliers.

1024x768 1 1/3 XGA. Native resolution of many LCD
projectors.
Used by VisionStation and VisionStation
3.

1080x720 1.5 HDTV

1152x768 1.5

1152x864 1 1/3 VESA

1152x870 1.3241 Macintosh

1152x900 1.28 Sun / SGI

1280x720 16/9 Format 720p.
HDTV
WXGA

1280x800 1.6

1280x854 1.498829 Mac G4 15" laptop

1280x960 1 1/3 SXVGA

1280x992 1.29 Optimised on the PowerStorm 350
OpenGL card/drivers from Compaq

1280x1024 1.25 SXGA

1360x766 1.77545692

1365x768 16:9 (nearly,
1.77734375)

NEC 61" plasma

1365x1024 1 1/3 VisionStation 3 with upgrade and
VisionStation 5.

1400x1050 1.3671875 DELL Laptop

1440x900 1.6 Apple 17" G4 laptop

1520x856 1.77570093

1600x900 16:9

1600x1024 1.5625

1600x1200 1 1/3 VESA
UXGA

1792x1120 1.6

1792x1344 1 1/3

1824x1128 1.61702128

1824x1368 1 1/3

1856x1392 1 1/3

1920x1080 16/9 1080i format. HDTV, known as 1K

1920x1200 1.6

1920x1440 1 1/3

2000x1280 1.5625 QXGA

2048x1152 16:9

2048x1536 1 1/3 Feature film, known as 2K
Also used by DOME display controllers

2048x2048 1 Tiger high resolution display

2500x1340 1.86567

3072x2252 1.3641 Sometimes used for IMAX (?)

3600x2613 1.37772675 Sometimes used for IMAX (?)

4096x3072 1 1/3 Image size for IMAX 3D rendering, known
as 4K

4096x3840 1.0666666 NCSA tiled wall (2001)

Serial Mouse Data Formats

The Microsoft Serial Mouse format is the defacto standard for serial mice. The Microsoft mouse format
allows for only two buttons. Three button mice working in Microsoft mode ignore the middle button.

The data packets are sent at 1200 baud with 1 stop bit and no parity. Each packet consists of 3 bytes. It is
sent to the computer every time the mouse changes state (ie. the mouse is moved or the buttons are
pressed/released).

 D6 D5 D4 D3 D2 D1 D0

 1st byte | 1 LB RB Y7 Y6 X7 X6
 2nd byte | 0 X5 X4 X3 X2 X1 X0
 3rd byte | 0 Y5 Y4 Y3 Y2 Y1 Y0

 LB is the state of the left button, 1 = pressed, 0 = released.
 RB is the state of the right button, 1 = pressed, 0 = released
 X0-7 is movement of the mouse in the X direction since the
 last packet. Positive movement is toward the right.
 Y0-7 is movement of the mouse in the Y direction since the
 last packet. Positive movement is back, toward the user.

The mouse driver software collects the X and Y movement bits from the different bytes in the packet.
All moves are sent as two’s complement binary numbers.

Although the Microsoft format only requires 7 data bits per byte, most mice actually send 8-bit data with
the most significant bit set to 1. Since the most-significant-bit (D7) is last in the serial data stream, this is
the same as sending two stop bits instead of one. The Joymouse sends data packets as shown below.

 D7 D6 D5 D4 D3 D2 D1 D0

 1st byte | 1 1 LB RB Y7 Y6 X7 X6
 2nd byte | 1 0 X5 X4 X3 X2 X1 X0
 3rd byte | 1 0 Y5 Y4 Y3 Y2 Y1 Y0

[Back to Data & Documentation] [Home]

Next: Motorola 68HC11 SCI Interface Up: Serial Communication Previous: Asynchronous Serial
Communication (SCI)

RS-232 Serial Protocol

The RS-232 serial communication protocol is a standard protocol used in asynchronous serial
communication. It is the primary protocol used over modem lines. It is the protocol used by the
MicroStamp11 when it communicates with a host PC.

Figure 23 shows the relationship between the various components in a serial ink. These components are
the UART, the serial channel, and the interface logic. An interface chip known as the universal
asynchronous receiver/transmitter or UART is used to implement serial data transmission. The
UART sits between the host computer and the serial channel. The serial channel is the collection of
wires over which the bits are transmitted. The output from the UART is a standard TTL/CMOS logic
level of 0 or 5 volts. In order to improve bandwidth, remove noise, and increase range, this TTL logical
level is converted to an RS-232 logic level of or volts before being sent out on the serial

channel. This conversion is done by the interface logic shown in figure 23. In your system the interface
logic is implemented by the comm stamp.

Figure 23: Asynchronous (RS-232) serial link

A frame is a complete and nondivisible packet of bits. A frame includes both information (e.g., data and
characters) and overhead (e.g., start bit, error checking and stop bits). In asynchronous serial protocols
such as RS-232, the frame consists of one start bit, seven or eight data bits, parity bits, and stop bits. A
timing diagram for an RS-232 frame consisting of one start bit, 7 data bits, one parity bits and two stop
bits is shown below in figure 24. Note that the exact structure of the frame must be agreed upon by both
transmitter and receiver before the comm-link must be opened.

Figure 24: RS-232 Frame (1 start bit, 7 data bits, 1 parity bits,

and 2 stop bits)

Most of the bits in a frame are self-explanatory. The start bit is used to signal the beginning of a frame
and the stop bit is used to signal the end of a frame. The only bit that probably needs a bit of explanation
is the parity bit. Parity is used to detect transmission errors. For even parity checking, the number of 1’s
in the data plus the parity bit must equal an even number. For odd parity, this sum must be an odd
number. Parity bits are used to detect errors in transmitted data. Before sending out a frame, the
transmitter sets the parity bit so that the frame has either even or odd parity. The receiver and transmitter
have already agreed upon which type of parity check (even or odd) is being used. When the frame is
received, then the receiver checks the parity of the received frame. If the parity is wrong, then the
receiver knows an error occurred in transmission and the receiver can request that the transmitter re-send
the frame.

In cases where the probability of error is extremely small, then it is customary to ignore the parity bit.
For communication between the MicroStamp11 and the host computer, this is usually the case and so we
ignore the parity bit.

The bit time is the basic unit of time used in serial communication. It is the time between each bit. The
transmitter outputs a bit, waits one bit time and then outputs the next bit. The start bit is used to
synchronize the transmitter and receiver. After the receiver senses the true-false transition in the start bit,
it waits one half bit time and then starts reading the serial line once every bit time after that. The baud
rate is the total number of bits (information, overhead, and idle) per time that is transmitted over the
serial link. So we can compute the baud rate as the reciprocal of the bit time.

Next: Motorola 68HC11 SCI Interface Up: Serial Communication Previous: Asynchronous Serial
Communication (SCI)
Bill Goodwine 2002-09-29

Next: LCD display for the Up: Serial Communication Previous: RS-232 Serial Protocol

Motorola 68HC11 SCI Interface

The Motorola 68HC11 supports one SCI. We’ll discuss both transmitting and receiving ends of the SCI.
The programmer controls the operation of the SCI interface through a set of hardware registers that are
memory mapped into the processor’s address space. There are 5 control registers shown below in figure
25. This figure also shows the logical names for individual bits in the registers. The BAUD register is used
to set the serial link’s baud rate. There are two control registers SCCR1 and SCCR2 that specify how the
SCI should work. There is a status register, SCSR that the programmer can use to check whether the
transmission/reception of a frame has been completed. Finally there is the data register SCDR that holds
the transmitted or received information bits.

Figure 25: 68HC11 SCI Registers

From the number of control bits in the SCCR1 and SCCR2 registers you can see that the programmer has
quite a bit of control over the SCI interface. Most of the situations we’ll be using, however, have
standard set-ups so we won’t need to discuss the control register bits in detail. Instead, we’ll provide
standard functions that encapsulate the user’s interface to SCI devices such as a personal computers and
simply discuss how these functions work. The proper setup of the SCI subsystem is usually done in your
program’s init() initialization routine.

To understand how the SCI subsystem works, let’s examine figure 26. Figure 26 shows how the
programmer interacts with the SCI transmit and receive buffers. In order to transmit, the programmer
first loads the 8-bit data register SCDR with the data to be sent. The SCI module automatically fills in the
start bit, stop bit, and the extra T8 bit from control register SCCR1. The T8 bit can be used as a parity bit.

Once the SCDR register is loaded, the subsystem loads this data into the SCI module’s transmit buffer.
The SCI transmit buffer then holds a single frame and this frame is then clocked out of the transmit
register one bit at a time at the rate specified in the BAUD register. Once all of the bits have been clocked
out of the transmit buffer, the SCI module sets the TDRE (transmit data register empty) bit in the SCI’s
status register SCSR. This single bit can then be used to check whether or not the frame has been
successfully transmitted.

Figure 26: SCI transmit and receive buffers

A similar set of steps can be used to check and see if the receive data register has been filled. Once
initialized, the receive data component of the SCI subsystem will wait for the true-to-false transition on
the input line signalling a start bit. After the start bit has been detected, the receive subsystem will shift
in 10 or 11 bits into the receive data register. The start and stop bits are removed and 8 bits of data are
loaded into the SCI data register SCDR. The ninth parity bit R8 is put in the SCCR1 control register. When
the receive data register is full, then the SCI subsystem sets the RDRF (receive data register full) flag in
the status register SCSR. The programmer can then check this status flag to see if a full frame has been
received.

The following code segment from an init() function can be used to initialize the SCI module to
transmit and receive at 38 kbaud. This setup was used in our earlier kernel.c functions to send
characters back and forth between the MicroStamp11 and the PC.

 void init(void){
 asm(" sei");
 CONFIG = 0x04;
 BAUD=BAUD38K;
 SCCR1 = 0x00;
 SCCR2 = 0x0C;
 asm(" cli");
 }

The instructions in this function do the following. The first instruction CONFIG = 0x04 turns off the

micro-controller’s watchdog timer. The second instruction BAUD=BAUD38K sets the SCI subsystem’s baud
rate to 38 kilo-baud. The variable BAUD38K is a logical name whose actual value will be found in
hc11.h . The next two lines set up the SCI subsystem’s parameters. By zeroing SCCR1, we are ignoring
the parity bit and creating a 10-bit frame. By setting SCCR2=0x0C, we’ve disabled all transmit and
receive interrupts and we’ve enabled the transmit and receive modules in the SCI subsystem.

Note that the SCI module has hardware interrupts associated with the hardware events

Transmission Complete (TC): which is set when the transmit shift register is empty.
Transmit Data Register Empty (TDRE): which is set when the transmit data register is empty.
Receive Data Register Full (RDRF): which is set when the receive data register is full.
Idle line (ILIE): which is when the receive module detects an idle line.

These hardware interrupts can be used to do parity-bit processing on a transmitted or received frame. In
our particular examples, however, we assume no parity checking so these interrupts have been disabled.

As specific examples of how the SCI interface can be used, we consider the two function InChar() and
OutChar() . These functions are used to receive and transmit, respectively, a single byte (frame) of data.

 void OutChar(char data){
 while((SCSR & TDRE) == 0);
 SCDR=data;
 }

 void InChar(void){
 while((SCSR & RDRF) == 0);
 return(SCDR);
 }

The first function, OutChar() transmits a single byte. The function simply waits in a loop until the TDRE

bit (transmit data register empty) is set. Once this is done, we know that any previously loaded bytes
have been successfully shifted out of the transmit data register. The function then reloads the SCI’s data
register SCDR with the new data. The other function InChar() receives a single byte. The function waits
in a while loop until the RDRF bit (receive data register full) is set, thereby indicating that 8-bits of have
been shifted into the receive data register. Once this is done, the function returns a pointer to the SCDR

data register.

Next: LCD display for the Up: Serial Communication Previous: RS-232 Serial Protocol
Bill Goodwine 2002-09-29

Next: Framing Error Up: What is a UART? Previous: What is a UART?

Serial Data Format

The serial data that we are interested in sending to and from the terminal is byte-wide ASCII data.
ASCII is a standard code for sending alphanumeric data and is actually only 7-bits wide. The 8th bit is
often used to indicate the parity of the 7-bit data word and used for error detection. For our circuit, the
high-order bit will always be 0, but you should always send it anyway. So, each packet that is sent will
consist of 8 bits, 7-bits of ASCII and one 0 in the high-order bit. A table of the ASCII code is shown in
Figure 1.

Figure 1: ASCII Character Codes

Once we agree to send ASCII, we should also agree on how that data should be send as a serial data
stream. The protocol we will use defines that the bits in the byte are passed least-significant bit first in a
serial stream. So, send the bits one at a time, starting with the least-significant. How long each bit is
asserted in this serial stream depends on how fast your baud rate is. At 9600 baud, for example, each bit
will be asserted for 1/9600 of a second, or about 104 sec. Now the problem is how to decide when to
look at the data wire in order to see the bit. The DCE and DTE will not be synchronized to a common
clock, so in order to decide when to look at the data line to see new data being passed, they must
synchronize with each new byte that is being passed. This is why the UART is ‘‘asynchronous’’ in
operation. The data is being passed at a known frequency, but the starting time of each new byte is
unknown. So, the receiving circuit must resynchronize at the start of each new byte.

In practice this is quite easy. You only need some sort of protocol that tells you when to expect new
data. For our system (and most asynchronous serial protocols in general) the data line must be held in a
1 state (+5v in our case) until a byte is ready to be passed. When a byte is to be sent, the data line drops
to 0 (gnd in our case) for one bit time to signal that a byte will follow. This is the start bit and its
purpose is to wake up the receiver and alert it to the byte that is about to be sent. The 8 data bits then
follow, least significant bit first, each asserted for one bit time (which depends on the baud rate). Finally,
one or two stop bits are sent to indicate the end of the byte. Stop bits are 1-bits that are asserted for one
bit time each. In our system the receiver will assume that only one stop bit is sent, and the sender will
send two stop bits. This is the most general and safest solution. For example, if the receiver expects a
single stop bit and two are sent, nothing bad happens except that some extra time elapses between that
byte and the next due to the extra stop bit. On the other hand, if the sender sends only a single stop bit
but the external receiver expects two, a mistake might be made. So, it’s safer to expect only a single stop
bit, but always send two (note that in practice, most terminals and other communication devices have
settings to control how many stop bits are sent or expected.) A picture of this data protocol is shown in
Figure 2.

Figure 2: Data Byte Transmission Format

Next: Framing Error Up: What is a UART? Previous: What is a UART?

Erik Brunvand
Tue Apr 11 15:50:32 MDT 2000

PostScript Tutorial
Written by Paul Bourke

Original November 1990. Last updated December 1998

Introduction

Postscript is a programming language that was designed to specify the layout of the printed page.
Postscript printers and postscript display software use an interpreter to convert the page description into
the displayed graphics.

The following information is designed as a first tutorial to the postscript language. It will concentrate on
how to use postscript to generate graphics rather than explore it as a programming language. By the end
you should feel confident about writing simple postscript programs for drawing graphics and text.
Further information and a complete specification of the language can be obtained from The Postscript
Language Reference Manual from Adobe Systems Inc, published by Addison-Wesley, Reading,
Massachuchusetts, 1985.

Why learn postscript, after all, many programs can generate it for you and postscript print drivers can
print to a file? Some reasons might be:

Having direct postscript output can often result in much more efficient postscript, postscipt that
prints faster than the more generic output from printer drivers.
There are many cases where generating postscript directly can result in much better quality. For
example when drawing many types of fractals where high resolution is necessary, being able to
draw at the native high resolution of a postscript printer is desirable.
It isn’t uncommon for commercial packages to make errors with their postscript output. Being able
to look at the postscript and make some sense of what is going on can sometimes give insight on
how to fix the problem.

The Basics

Postscript files are (generally) plain text files and as such they can easily be generated by hand or as the
output of user written programs. As with most programming languages, postscript files (programs) are
intended to be, at least partially, human-readable. As such, they are generally free format, that is, the text
can be split across lines and indented to hilight the logical structure.
Comments can be inserted anywhere within a postscript file with the percent (%) symbol, the comment
applies from the % until the end of the line.
While not part of the postscript specification the first line of a postscript file often starts as %!. This is so
that spoolers and other printing software detect that the file is to interpreted as postscript instead of a
plain text file. The inline example below will not include this but the postscript files linked from this
page will include it since they are design for direct printing.
The first postscript command to learn is showpage, it forces the printer to print a page with whatever is
currently drawn on it. The examples given below print on single pages and therefore there is a showpage
at the end of the file in each example, see the comments later regarding EPS.

A Path

A path is a collection of, possibly disconnected, lines and areas describing the image. A path is itself not
drawn, after it is specified it can be stroked (lines) or filled (areas) making the appropriate marks on the
page. There is a special type of path called the clipping path, this is a path within which future drawing
is constrained. By default the clipping path is a rectangle that matches the border of the paper, it will not
be changed during this tutorial.

The Stack

Postscript uses a stack, otherwise known as a LIFO (Last In First Out) stack to store programs and data.
A postscript interpreter places the postscript program on the stack and executes it, instructions that
require data will read that data from the stack. For example, there is an operator in postscript for
multiplying two numbers, mul . it requires two arguments, namely the two numbers that are to be
multiplied together. In postscript this might be specified as

 10 20 mul

The interpreter would place 10 and then 20 onto the stack. The operator mul would remove 20 and then
10 from the stack, multiply them together and leave the result, 200, on the stack.

Coordinate system

Postscript uses a coordinate system that is device independent, that is, it doesn’t rely on the resolution,
paper size, etc of the final output device. The initial coordinate system has the x axis to the right and y
axis upwards, the origin is located at the bottom left hand corner of the page. The units are of "points"
which are 1/72 of an inch long. In other words, if we draw a line from postscript coordinate (72,72) to
(144,72) we will have a line starting one inch in from the left and right of the page, the line will be
horizontal and be one inch long.

The coordinate system can be changed, that is, scaled, rotated, and translated. This is often done to form
a more convenient system for the particular drawing being created.

Basic Drawing Commands

Time to draw something. The following consists of a number of operators and data, some operators like
newpath don’t need arguments, others like lineto take two arguments from the stack. All the examples
in this text are shown as postscript on the left with the resulting image on the right. The text on the left
also acts as a link to a printable form of the postscript file.

newpath
100 200 moveto
200 250 lineto
100 300 lineto
2 setlinewidth
stroke

There are also a relative moveto and lineto commands, namely, rmoveto and rlineto .

In this next example a filled object will be drawn in a particular shade, both for the outline and the
interior. Shades range from 0 (black) to 1 (white). Note the closepath that joins the first vertex of the
path with the last.

newpath
100 200 moveto
200 250 lineto
100 300 lineto
closepath
gsave
0.5 setgray
fill
grestore
4 setlinewidth
0.75 setgray
stroke

The drawing commands such as stroke and fill destroy the current path, the way around this is to use
gsave that saves the current path so that it can be reinstated with grestore.

Text

Text is perhaps the most sophisticated and powerful aspect of postscript, as such only a fraction of its
capabilities will be discussed here. One of the nice things is that the way characters are placed on the
page is no different to any other graphic. The interpreter creates a path for the character and it is then
either stroked or filled as per usual.

/Times-Roman findfont
12 scalefont
setfont
newpath
100 200 moveto
(Example 3) show

As might be expected the position (100,200) above specifies the position of the bottom left corner of the
text string. The first three lines in the above example are housekeeping that needs to be done the first
time a font is used. By default the font size is 1 point, scalefont then sets the font size in units of points

(1/72 inch). The brackets around the words "Example 3" indicate that it is a string.

A slightly modified version of the above uses charpath to treat the characters in the string as a path
which can be stroked or filled.

/Times-Roman findfont
32 scalefont
setfont
100 200 translate
45 rotate
2 1 scale
newpath
0 0 moveto
(Example 4) true charpath
0.5 setlinewidth
0.4 setgray
stroke

You should make sure you understand the order of the operators above and the resulting orientation and
scale of the text, procedurally it draws the text, scale the y axis by a factor of 2, rotate counter
clockwise about the origin, finally translate the coordinate system to (100,200).

Colour

For those with colour LaserWriters the main instruction of interest that replaces the setgray is previous
examples is setrgbcolor. It requires 3 arguments, the red-green-blue components of the colour each
varying from 0 to 1.

newpath
100 100 moveto
0 100 rlineto
100 0 rlineto
0 -100 rlineto
-100 0 rlineto
closepath
gsave
0.5 1 0.5 setrgbcolor
fill
grestore
1 0 0 setrgbcolor
4 setlinewidth
stroke

Programming

As mentioned in the introduction postscript is a programming language. The extend of this language will

not be covered here except to show some examples of procedures that can be useful to simplify
postscript generation and make postscript files smaller.
Lets assume one needed to draw lots of squares with no border but filled with a particular colour. One
could create the path repeatedly for each one, alternatively one could define something like the
following.

/csquare {
 newpath
 0 0 moveto
 0 1 rlineto
 1 0 rlineto
 0 -1 rlineto
 closepath
 setrgbcolor
 fill
} def

20 20 scale

5 5 translate
1 0 0 csquare

1 0 translate
0 1 0 csquare

1 0 translate
0 0 1 csquare

This procedure draws three coloured squares next to each other, each 20/72 inches square, note the scale
of 20 on the coordinate system. The procedure draws a unit square and it expects the RGB colour to be
on the stack. This could be used as a method (albeit inefficient) of drawing a bitmap image.

Even if one is simply drawing lots of lines on the page, in order to reduce the file size it is common to
define a procedure as shown below. It just defines a single character "l" to draw a line segment, one can
then use commands like 100 200 200 200 l" to draw a line segment from (100,200) to (200,200).

/l { newpath moveto lineto stroke } def

Some other useful Commands

The following are some other commonly used commands along with a brief description, again you
should consult a reference manual for the entire set of commands.

arc Draws an arc (including a circle). The arguments are xcenter, ycenter, radius, start angle,
stop angle. The arc is drawn counterclockwise, the angles are in units of degrees.

centerpoint This is an example of an instruction that takes no arguments but leaves numbers on the
stack, namely the coordinates of the current point.

setdash This sets the dash attribute of a line in terms of a mark-space array. Just as strings are
denoted by round braces (), arrays are denoted by square braces []. For example the
following command "[3 3] 0 setdash" would make any following lines have a 3 unit dash
followed by a 3 unit space. The argument after the dash array is the offset for the start of

the first dash.

setlinecap This specifies what the ends of a stroked line look like. It takes one argument which may
be 0 (butt caps), 1 (round caps), or 2 (extended butt caps). The radius of round caps and
the extension of the butt caps is determined by the line thickness.

/LINE {
 newpath
 0 0 moveto
 100 0 lineto
 stroke
} def

100 200 translate
10 setlinewidth 0 setlinecap 0 setgray LINE
1 setlinewidth 1 setgray LINE

0 20 translate
10 setlinewidth 1 setlinecap 0 setgray LINE
1 setlinewidth 1 setgray LINE

0 20 translate
10 setlinewidth 2 setlinecap 0 setgray LINE
1 setlinewidth 1 setgray LINE

setlinejoin This determines the appearance of joining lines. It takes one argument which may be 0
(miter join), 1 (round join), or 2 (bevel join).

/ANGLE {
 newpath
 100 0 moveto
 0 0 lineto
 100 50 lineto
 stroke
} def

10 setlinewidth
0 setlinejoin
100 200 translate
ANGLE

1 setlinejoin
0 70 translate
ANGLE

2 setlinejoin
0 70 translate
ANGLE

curveto This draws a bezier curve through the three points given as arguments. The curve starts
at the first point, end at the last point, and the tangents are given by the line between the
first-second and second-third pair.

save and
restore

Instead of having to "undo" changes to the graphics state it is possible using save to
push the entire graphics state onto the stack and then reinstate it later with a restore.

Drawing "small" Images

Printing images using postscript is somewhat more involved than the graphics discussed so far.
Examples of two image types will be presented, grey scale images (which could also be used for black
and white images) and 24 bit RGB images.

8 Bit Grey Scale

The simplest method that is applicable to small images is the postscript command image. This take 5
arguments: the width and height of the image, the bits per pixel, a transformation matrix (6 numbers)
and finally a procedure for acquiring the image data. In the following example, the grey scale (8 bit)
image is 24 pixels wide by 34 pixels tall. Since in postscript an image is defined from the lower left
corner, and the image is defined from its top left corner, the transformation matrix used here does the
appropriate vertical flipping. The procedure used here is esentially a null procedure, it is a hexadecimal
string as indicated by the angle brackets <>. Postscript renders images as one point square hence the
scaling by 24 horizontally and 34 vertically. There are many details left out of this discussion, the reader
needs to consult a postscript reference manual for more information.

100 200 translate
26 34 scale
26 34 8 [26 0 0 -34 0 34]
{<
ff
ff000000000000000000000000000000000000ffffffffffffff
ff00efefefefefefefefefefefefefefefef0000ffffffffffff
ff00efefefefefefefefefefefefefefefef00ce00ffffffffff
ff00efefefefefefefefefefefefefefefef00cece00ffffffff
ff00efefefefefefefefefefefefefefefef00cecece00ffffff
ff00efefefefefefefefefefefefefefefef00cececece00ffff
ff00efefefefefefefefefefefefefefefef00000000000000ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00efef000000ef000000ef000000ef0000ef0000efefef00ff
ff00ef00ff
ff00ef00ff
ff00efef000000ef00000000ef00000000ef000000efefef00ff
ff00ef00ff
ff00ef00ff
ff00efef0000ef00000000000000ef000000ef0000efefef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ff
ff

>}
image

24 Bit RGB Colour

RGB images with 8 bits per pixel can be represented in postscript using the command colorimage which
is very similar to the image command. In the following example the image is 32 pixels wide by 38
pixels tall.

100 200 translate
32 38 scale
32 38 8 [32 0 0 -38 0 38]
{<
1dfb0023fb002afb0031fb0037fb003ffb00
66fb006cfb0073fb0079fb0081fb0086fb00
adfb00b5fb00bbfb00c3fb00c8fb00cffb00
23f5002af50031f50037f5003ff50044f500

 ...cut...

3807003f08004508004c0800520800590800
8108008608008d07009308009a0700a20800
c90800d00800d60800dd0800e40700ea0700
>}
false 3 colorimage

What is EPS?

EPS (Encapsulated PostScript) is normal postscript with a few restrictions and a few comments in a
specified format that provides more information about the postscript that follows. It was design to make
it easier for applications to include postscript generated elsewhere within their own pages. The full
specification can be obtained from Adobe but in order to make a postscript file DSC (Adobe’s
Document Structuring Convention) compliant the following must be true:

There shouldn’t be a showpage, since EPS is designed to be included inside other documents a
showpage would obviously ruin the intended effect. In reality most programs that import EPS
redefine showpage so that if it does exist it doesn’t cause problems, a common definition is
"/showpage { } def"
The file should consist of just one page.
The first line of the file should be "%!PS-Adobe EPSF-3.0"
There must be a correctly formed BoundingBox comment, this looks like
%%BoundingBox: xmin ymin xmax ymax
and tells application that plans to include the postscript how large the image is.
The file should not use any operators that change the global drawing state. In particular the
following command may not be used:

 banddevice exitserver initmatrix setshared
 clear framedevice quit startjob
 cleardictstack grestoreall renderbands copypage
 initclip setglobal initgraphics setpagedevice
 erasepage nulldevice sethalftone setscreen

 setgstate setmatrix settransfer undefinefont

The stack must be left EXACTLY in the same state at the end of the EPS file as it was at the start
of the EPS file.
The lines in EPS files cannot exceed 255 characters in length.

Perhaps most importantly, since usually an application that supports postscript file insertion doesn’t have
the full postscript interpreter, an EPS file generally has a preview image associated with it. The
application dealing with the EPS file can display the preview in the user interface giving a better idea
what will print. It should be noted that EPS previews are one of the more machine/OS dependent aspects
of EPS.

Frequently Used Comments

Comments can of course be be added anywhere and they will be ignored by the interpreter. There are
some standard comments the most common of which are be listed below. The text within the square
brackets should be replaced with the appropriate text for the file in which they appear (without the []).

%!PS-Adobe-3.0 EPSF-3.0
%%Creator: [generally the program that generated the postscript]
%%Title: [descriptive name or just the file name]
%%CreationDate: [date the file was created]
%%DocumentData: Clean7Bit
%%Origin: [eg: 0 0]
%%BoundingBox: xmin ymin xmax ymax
%%LanguageLevel: 2 [could be 1 2 or 3]
%%Pages: 1
%%Page: 1 1
%%EOF

Drawing "large" images

Due to line length and other restrictions, turning ’large" bitmaps into postscript requires a modification
to the methods discussed earlier. The following will describe the most general case of representing a 24
bit RGB colour image as an EPS file. While inefficient this can also be used for greyscale and even
black and white images. In the following code "width" and "height" should be replaced with the numbers
appropriate to the image.

%!PS-Adobe-3.0 EPSF-3.0
%%Creator: someone or something
%%BoundingBox: 0 0 width height
%%LanguageLevel: 2
%%Pages: 1
%%DocumentData: Clean7Bit
width height scale
width height 8 [width 0 0 -height 0 height
{currentfile 3 width mul string readhexstring pop} bind
false 3 colorimage

...hexadecimal information cut...

%%EOF

The modifications for greyscale images are quite simple, change the line

 {currentfile 3 width mul string readhexstring pop} bind

to

 {currentfile width string readhexstring pop} bind

and of course only write one hexadecimal number (representing the grey level of the pixel) for each
pixel of the image. This technique should work for images of any size.

Paper sizes

 Paper Size Dimension (in points)
 ------------------ ---------------------
 Comm #10 Envelope 297 x 684
 C5 Envelope 461 x 648
 DL Envelope 312 x 624
 Folio 595 x 935
 Executive 522 x 756
 Letter 612 x 792
 Legal 612 x 1008
 Ledger 1224 x 792
 Tabloid 792 x 1224
 A0 2384 x 3370
 A1 1684 x 2384
 A2 1191 x 1684
 A3 842 x 1191
 A4 595 x 842
 A5 420 x 595
 A6 297 x 420
 A7 210 x 297
 A8 148 x 210
 A9 105 x 148
 B0 2920 x 4127
 B1 2064 x 2920
 B2 1460 x 2064
 B3 1032 x 1460
 B4 729 x 1032
 B5 516 x 729
 B6 363 x 516
 B7 258 x 363
 B8 181 x 258
 B9 127 x 181
 B10 91 x 127

QD3D
Apple QuickTime 3D Meta file format

Converted by Paul Bourke

Metafile Header

Full name: 3DMF, 3DMetafile
Drawable: No
Parent Class Heirarchy: 3DMF
Binary type: 3DMF
Ascii type: 3DMetafile
Binary size: 16
Parent Objects: none
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The metafile header is the first object to appear in any metafile.
Metafile versions of 1.x are expected to maintain some degree of compatibility.
Flags indicate to a general degree of how the file is structured or should be read.

A database file indicates that the metafile is a library, and all objects that are shared appear in the table
of contents.
A stream file indicates that no references exist in the metafile, so that a parsing program may discard
encountered data when it is through with it.

If the toc location (Table of Contents location) is NULL, the entire file must be parsed to find a Table
Of Contents.

Data structure:
Uns16 majorVersion
Uns16 minorVersion
MetafileFlags flags
FilePointer tocLocation

As of this release:

majorVersion = 0
minorVersion = 8

The final release of the metafile will be:

majorVersion = 1
minorVersion = 0

MetafileFlags bitfield is:

Binary Text
0x00000000 Normal
0x00000001 Stream
0x00000002 Database

Text samples:

3DMetafile (
 1 0 # version
 Normal
 toc>
)
...
toc: TableOfContents (
 ...
)

Begin Group

Full name: 3DMF, BeginGroup
Drawable: No
Parent Class Heirarchy: 3DMF
Binary type: bgng
Ascii type: BeginGroup
Binary size: sizes of contained objects + (8 * number of child objects)
Parent Objects: special
Format: Data Format
Subobjects:
Inherited: No
Referencable: No

Description:
The begin group object is used similarly to the container object, except it is used as the starting delimiter
for a group. This allows a naive parser to traverse a metafile without special casing the many types of
groups that appear in the metafile spec. It also allows for a single mechanism that is used to declare a
group.

Please note that all objects of type group MUST be contained in a begin group, to allow them to be
identified as starting a group.

Data structure:

Text samples:

BeginGroup (DisplayGroup ())
 Triangle (0 0 1 0 0 0 0 1 0)
 Translate (1 2 3)
 Sphere ()
EndGroup ()

BeginGroup (
 OrderedDisplayGroup ()
 DisplayGroupState (DoNotDraw)
)
 Triangle (0 0 1 0 0 0 0 1 0)
 Translate (1 2 3)
 Sphere ()
EndGroup ()

BeginGroup (InfoGroup ())
 CString (Copyright (c) 1995)
EndGroup ()

Container

Full name: 3DMF, Container
Drawable: No
Parent Class Heirarchy: 3DMF
Binary type: cntr
Ascii type: Container
Binary size: sizes of contained objects + (8 * number of child objects)
Parent Objects: special
Format: Data Format
Subobjects: special
Inherited: No
Referencable: No

Description:
Used to bind objects together to form a single object.
Container objects always contain other objects.
The first object in the container is called the root object, and sets the scope of the remaining objects in
the container, called subobjects.
In general, the root object instantiates the object with its default values, and subobjects append
information to the original root object.
There is one exception to these encapsulation rules, which is group objects. Although group objects
contain a list of other objects, they are delimited with another 3DMF object, the end group object.

Data structure:

Text samples:

Container (
 Box ()
 Container (
 AttributeSet ()
 DiffuseColor (1 0 1)
)
)

End Group

Full name: 3DMF, EndGroup
Drawable: No
Parent Class Heirarchy: 3DMF
Binary type: endg
Ascii type: EndGroup
Binary size: 0
Parent Objects: none
Format: No Data
Subobjects: none
Inherited: No
Referencable: No

Description:
This object is used as a delimiter for all group objects.

Data structure:
Groups should be arranged into non-overlapping pairs of BeginGroup (group type/data) and an
EndGroup object.

All groups must be arranged into DAGs. (no cycles are permitted)

Text samples:

Empty group
BeginGroup (OrderedDisplayGroup ())
EndGroup ()

Group containing 1 object
BeginGroup (DisplayGroup ())
 Translate (1 2 3)
 Sphere ()
EndGroup ()

Inline group referenced elsewhere

REDColor:
BeginGroup (
 DisplayGroup ()

 DisplayGroupState (IsInline)
)
 Container (
 AttributeSet ()
 DiffuseColor (1 0 0)
)
EndGroup ()

BeginGroup (DisplayGroup ())
 Reference (1) # REDColor
 Cone () # Cone is RED
EndGroup ()
toc: TableOfContents (
 nextTOC> -1 2 0 12
 1
 1 REDColor>
)

Junk

Full name: 3DMF, Junk
Drawable: No
Parent Class Heirarchy: 3DMF
Binary type: junk
Ascii type: Junk
Binary size: any size
Parent Objects: special
Format: Data Format
Subobjects: any
Inherited: No
Referencable: No

Description:
The junk object contains garbage, and serves as a placeholder for deleted information in the metafile.
Junk objects should always be skipped and never parsed.

Data structure:

Text samples:

Container (
 Box ()
 Junk (
 AttributeSet ()
 DiffuseColor (1 0 1)
)
)

is equivalent to:

Box ()

Reference

Full name: 3DMF, Reference
Drawable: No
Parent Class Heirarchy: 3DMF
Binary type: rfrn
Ascii type: Reference
Binary size: 4
Parent Objects: may be substituted for any Shared object
Format: Data Format
Subobjects: 1 Storage object (optional)
Inherited: No
Referencable: No

Description:
The reference object is used to instantiate an object multiple times in a metafile.

It may be substituted anywhere in the metafile for another Shared object. Only shared objects may be
referenced.

References are resolved in the Table Of Contents. If a Storage object is specified as a subobject, it is
assumed that the reference is external to the current metafile, and should be resolved in that external
storages table of contents.

Data structure:
Uns32 refID

if refID = 0, must contain subobjects

if refID > 0, a TOC must exist in current metafile that contains refIDs resolution

This refID is resolved in the current metafile unless a Storage subobject is found in the Reference

Text samples:

Reference (23) # internal reference
...
toc: TableOfContents (
 nextTOC> 35 -1 0 12
 ...
 20 CarFrame>
 21 Axle>
 23 WheelOfCar>
 ...
)

Container (# external reference
 Reference (23)

 UnixPath (parts/car.eb)
)

Table Of Contents

Full name: 3DMF, TableOfContents
Drawable: No
Parent Class Heirarchy: 3DMF
Binary type: toc
Ascii type: TableOfContents
Binary size: 28 + (tocEntrySize * nEntries)
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The table of contents provides a means of resolving references within a file. The nextTOC file pointer
points to the next table of contents in the file, or is NULL if no other table of contents exists.

The reference seed indicates the next available reference id available for reference objects. It is an
unsigned positive number that is incremented with each addtional reference in a file. It is always one
more than the maximum reference seed in a file.

The type seed indicates the next available type ID available for type objects. It is a negative number that
is decremented with each additional type in a file. It is always one less than the minimum type seed in a
file.

The tocEntryType and tocEntrySize are a set of paired values which indicate the size and type of
information stored in a tocEntry.

The tocEntries are sorted by reference ID, in increasing order, to allow fast searching of the table of
contents.

Data structure:
FilePointer nextTOC
Uns32 refSeed
Int32 typeSeed
Uns32 tocEntryType
Uns32 tocEntrySize
Uns32 nEntries
TOCEntry tocEntries

refSeed > 0
typeSeed < 0

tocEntryType = 0 or 1
tocEntrySize = 12 or 16, based upon tocEntryType
the TOCEntry structure is:
- tocEntryType 0, tocEntrySize 12 is:

Uns32 refID
FilePointer objLocation

- tocEntryType 1, tocEntrySize 16 is:

Uns32 refID
FilePointer objLocation
ObjectType objType

Text samples:

3DMetafile (
 1 0
 Normal
 toc>
)
box23:
Mesh (
 45 # nVertices
 ...
)
Reference (1)
Arrows:
BeginGroup (DisplayGroup ())
 Cone ()
 Scale (0.2 0.1 0.2)
 Cylinder ()
EndGroup ()
Reference (2)
Reference (4)
...
Type (-1 Joes Garage:RepairHistory)
...

-1 (Jim Fixed lug nut 0.23 0.2 1.2)

toc:
TableOfContents (
 nextTOC>
 5 # refSeed
 -2 # typeSeed
 0 12 # tocEntry Type/Size
 3 # nEntries
 1 box23>
 2 Arrows>
 4 Geom34>
)

Type

Full name: 3DMF, Type
Drawable: No
Parent Class Heirarchy: 3DMF
Binary type: type
Ascii type: Type
Binary size: 4 + sizeof(String)
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
A type definition is used to declare a custom data type. A type definition may appear anywhere in a file,
however, the custom type must be encountered before the custom object of that type is encountered..

All custom types in the metafile are negative numbers, and the typeID field begins at -1 and is
decremented for each additional type. Only 2147483648 (or 2^31) custom types are permitted in a single
metafile.

The owner string is an ISO 9070 registered owner string. Owner strings are unique globally for each
type of custom data.

In the binary and text metafile, the typeID is used as the object type later in the file.

Data structure:
Int32 typeID
String owner

typeID < 0
owner string

Text samples:

Type (
 -1
 Joes Garage:BoltData
)

...

-1 (
 -2.3 34 # Stress (kPA/area)
)

Face Attribute Set List

Full name: Data, AttributeSetList, FaceAttributeSetList
Drawable: No
Parent Class Heirarchy: Data, AttributeSetList
Binary type: fasl
Ascii type: FaceAttributeSetList
Binary size: 12 + nIndices * sizeof(Uns) + padding
Parent Objects: ALWAYS: Box, GeneralPolygon, Mesh, TriGrid
Format: Data Format
Subobjects: many AttributeSet (order-dependent)
Inherited: No
Referencable: No

Description:
The face attribute set list specifies a list of attributes to be attached to a set of faces determined by the
parents topology.

nObjects indicates the total number of objects being mapped to.

packing indicates how AttributeSet objects are mapped to indices. Include packing lists the face indices,
in sequential order, of those faces to be assigned face attribute sets. Exclude packing lists the face
indices, in sequential order, of those faces to NOT be assigned face attribute sets.

So, for example, supposing nObjects was 5, Include packing with a list of 3 indices after it means that
there are 3 subobjects, each assigned to the indices in their order. Exclude packing with a list of 3
indices after it means there are 2 attribute sets subobjects, assigned to the indices NOT in the exclude
list, in order.

The face attribute set list is padded to the nearest long word.

The values in indices always appear in increasing order.

If a packing value other than Include or Exclude is found, this object and its subobjects should be
ignored.

Data structure:
Uns32 nObjects
PackingEnum packing
Uns32 nIndices
Uns32 indices[nIndices]

nObjects must match parent values

PackingEnum is:

Binary Text

0x00000000 Include
0x00000001 Exclude

0 indices < nObjects

Text samples:

Container (
 Box ()
 Container (
 FaceAttributeSetList (
 6 Include 2
 0 1
)
 Container (# assigned to 0
 AttributeSet ()
 DiffuseColor (1 0 0)
)
 Container (# assigned to 1
 AttributeSet ()
 DiffuseColor (0 0 1)
)
)
)

Container (
 Box ()
 Container (
 FaceAttributeSetList (
 6 Exclude 2
 2 4
)
 Container (# assigned to 0
 AttributeSet ()
 DiffuseColor (1 0 0)
)
 Container (# assigned to 1
 AttributeSet ()
 DiffuseColor (1 1 0)
)
 Container (# assigned to 3
 AttributeSet ()
 DiffuseColor (1 0 1)
)
 Container (# assigned to 5
 AttributeSet ()
 DiffuseColor (0 0 1)
)
)
)

Geometry Attribute Set List

Full name: Data, AttributeSetList, GeometryAttributeSetList
Drawable: No

Parent Class Heirarchy: Data, AttributeSetList
Binary type: gasl
Ascii type: GeometryAttributeSetList
Binary size: 12 + nIndices * 4 + padding
Parent Objects: ALWAYS: PolyLine
Format: Data Format
Subobjects: many AttributeSet (order-dependent)
Inherited: No
Referencable: No

Description:
The geometry attribute set list specifies a list of attributes to be attached to a set of geometric entities
determined by the parents topology.

Currently, only the PolyLine primitive uses this object. Each attribute set is mapped to a line segment in
the PolyLine.

Packing for this object is identical to the other attribute set lists.

Data structure:
Uns32 nObjects
PackingEnum packing
Uns32 nIndices
Uns32 indices[nIndices]

nObjects must match parent values

PackingEnum described in FaceAttributeSetList

Text samples:

Container (
 PolyLine (
 3
 10 2 3
 0 0 0
 2 8.5 3
)
 Container (
 GeometryAttributeSetList (
 3 Exclude 1 1
)
 Container (# segment 0
 AttributeSet ()
 DiffuseColor (1 0 0)
)
 Container (# segment 2
 AttributeSet ()
 DiffuseColor (0 0 1)
)
)
)

Vertex Attribute Set List

Full name: Data, AttributeSetList, VertexAttributeSetList
Drawable: No
Parent Class Heirarchy: Data, AttributeSetList
Binary type: vasl
Ascii type: VertexAttributeSetList
Binary size: 12 + nIndices * sizeof(Uns) + padding
Parent Objects: ALWAYS: GeneralPolygon, Line, Mesh, Polygon, PolyLine, Triangle, TriGrid
Format: Data Format
Subobjects: many AttributeSet (order-dependent)br> Inherited: No
Referencable: No

Description:
The vertex attribute set list specifies a list of attributes to be attached to a set of vertices determined by
the parents topology.

Packing for this object is identical to the other attribute set lists.

Data structure:
Uns32 nObjects
PackingEnum packing
Uns32 nIndices
Uns32 indices[nIndices]

nObjects must match parent values

PackingEnum described in FaceAttributeSetList

Text samples:

Container (
 Triangle (
 0 0 0
 0 2 0
 0 0 2
)
 Container (
 VertexAttributeSetList (
 3 Exclude 0
)
 Container (# vertex 0
 AttributeSet ()
 DiffuseColor (0 0 0)
)
 Container (# vertex 0
 AttributeSet ()
 DiffuseColor (0 0 1)
)

 Container (# vertex 0
 AttributeSet ()
 DiffuseColor (0 1 0)
)
)
)

Camera Placement

Full name: Data, CameraData, CameraPlacement
Drawable: No
Parent Class Heirarchy: Data, CameraData
Binary type: cmpl
Ascii type: CameraPlacement
Binary size: 36
Parent Objects: ALWAYS: Camera objects: ViewAngleAspectCamera, ViewPlaneCamera,
OrthographicCamera
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The camera placement specifies the location and orientation of the camera in space, by a camera
location, a point of interest, and an up vector. This placement locates and orients the camera, and defines
a space in which the rest of the parameters are interpreted.

If the up vector is not of unit length upon reading, it should be normalized by the reading program.

The camera placement is affected by the current transformation state in a hierarchy. The location and
point of interest are multiplied by the current transformation directly, and the up vector is multiplied by
the current transformation minus any translation component of the transform, and unitized.

The camera vector is defined as:
camera vector = (pointOfInterest - location)

Data structure:
Point3D location
Point3D pointOfInterest
Vector3D upVector

upVector ^ (pointOfInterest - location)

|upVector| = 1.0

Default Values:
0 0 1 # location

0 0 0 # pointOfInterest
0 1 0 # upVector

Text samples:

Container (
 OrthographicCamera (
 -1 -1 1 1
)
 CameraPlacement (
 10 0 0 # located along X axis
 0 0 0 # point of interest is origin
 0 1 0 # Y is up
)
)

Camera Range

Full name: Data, CameraData, CameraRange
Drawable: No
Parent Class Heirarchy: Data, CameraData
Binary type: cmrg
Ascii type: CameraRange
Binary size: 8
Parent Objects: ALWAYS: Camera objects: ViewAngleAspectCamera, ViewPlaneCamera,
OrthographicCamera
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The camera range affects the clipping of the viewing frustum.

This is used to bound the range of the set of objects of interest.

Hither is the frontmost clipping plane (sometimes referred to as near), yon is the backmost clipping
plane (sometimes referred to as far).

Each of these distances is measured along the camera vector, described in the Camera Placement object.

Data structure:
Float32 hither
Float32 yon

0 < hither yon

default is:

hither e
yon

Text samples:

Container (
 OrthographicCamera (
 -1 -1 1 1
)
 CameraRange (
 0.1 2 # hither, yon
)
)

Camera ViewPort

Full name: Data, CameraData, CameraViewPort
Drawable: No
Parent Class Heirarchy: Data, CameraData
Binary type: cmvp
Ascii type: CameraViewPort
Binary size: 16
Parent Objects: ALWAYS: any Camera object: ViewAngleAspectCamera, ViewPlaneCamera,
OrthographicCamera
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The camera viewport specifies a rectangular region of the viewing frustum to which the image is
clipped. Effectively the view port may be used to zoom in on a particular feature of an image.

The view port uses the cartesian coordinate system, with Y towards the top of the screen, X to the right,
and Z coming towards the viewer, as shown in the diagram.

Data structure:
Point2D origin
Float32 width
Float32 height

-1 origin.x 1
-1 origin.y 1
0 < width 2
0 < height 2

Default is:
-1 1 # origin
2 # width
2 # height

Text samples:

Container (
 OrthographicCamera (
 -1 -1 1 1
)
 CameraViewPort (# zoom to 200%
 -0.5 0.5 1 1
)
)

Bottom Cap Attribute Set

Full name: Data, CapData, BottomCapAttributeSet
Drawable: No
Parent Class Heirarchy: Data, CapData
Binary type: bcas
Ascii type: BottomCapAttributeSet
Binary size: 0
Parent Objects: ALWAYS: Cone, Cylinder
Format: No Data
Subobjects: 1 AttributeSet (optional)
Inherited: No
Referencable: No

Description:
This object simply allows the attributes associated with the bottom cap of a Cone or Cylinder to be
encapsulated.

Presence of a bottom cap attribute set does not neccessarily mean the bottom cap is drawn.

The Caps object determines whether the Cone and Cylinder caps are drawn or not.

Data structure:

Text samples:

3DMetafile (1 0 Normal toc>)
Container (
 Cone ()
 Caps (Bottom)
 Container (
 BottomCapAttributeSet ()

 capColor: Container (
 AttributeSet ()
 DiffuseColor (1 0 0)
)
)
)
Container (
 Cone ()
 Caps (Bottom)
 Container (
 BottomCapAttributeSet ()
 Reference (1)
)
)
...
toc: TableOfContents (
 ...
 1 capColor>
)

Caps

Full name: Data, CapData, Caps
Drawable: No
Parent Class Heirarchy: Data, CapData
Binary type: caps
Ascii type: Caps
Binary size: 4
Parent Objects: ALWAYS: Cone, Cylinder
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
In the binary file, the upper 28 bits of the caps bitfield should be ignored. In the text file, unknown
bitfield strings should be skipped. The default caps value is 0, or None.

The Top cap bit (label) is ignored in the Cone.

Data structure:
CapsFlags caps

CapsFlags is defined as:

Binary Text
0x00000000 None
0x00000001 Bottom
0x00000002 Top

Default is:
None

Text samples:

Container (
 Cylinder ()
 Caps (Bottom | Top)
)

Container (# Cone with a blue bottom
 Cone ()
 Caps (Bottom)
 Container (
 BottomCapAttributeSet ()
 Container (
 AttributeSet ()
 DiffuseColor (0 0 1)
)
)
)

Face Cap Attribute Set

Full name: Data, CapData, FaceCapAttributeSet
Drawable: No
Parent Class Heirarchy: Data, CapData
Binary type: fcas
Ascii type: FaceCapAttributeSet
Binary size: 0
Parent Objects: ALWAYS: Cone, Cylinder
Format: No Data
Subobjects: 1 AttributeSet (optional)
Inherited: No
Referencable: No

Description:
Attaches a set of attributes to the face cap of the cone and cylinder primitives. For the cone, its indicated
in the diagram.

Data structure:

Text samples:

Container (
 Cone ()
 Caps (Bottom)
 Container (
 FaceCapAttributeSet ()
 Container (

 AttributeSet ()
 DiffuseColor (0.2 0.9 0.4)
)
)
)

Top Cap Attribute Set

Full name: Data, CapData, TopCapAttributeSet
Drawable: No
Parent Class Heirarchy: Data, CapData
Binary type: tcas
Ascii type: TopCapAttributeSet
Binary size: 0
Parent Objects: ALWAYS: Cylinder
Format: No Data
Subobjects: 1 AttributeSet (optional)
Inherited: No
Referencable: No

Description:
Attaches a set of attributes to the top cap of the cylinder primitive.

Presence of a top cap attribute set does not neccessarily mean the top cap is drawn.

The Caps object determines whether the Cylinder caps are drawn or not.

Data structure:

Text samples:

Container (
 Cylinder ()
 Caps (Top)
 Container (
 TopCapAttributeSet ()
 Container (
 AttributeSet ()
 DiffuseColor (0.2 0.9 0.4)
)
)
)

Display Group State

Full name: Data, DisplayGroupState

Drawable: No
Parent Class Heirarchy: Data
Binary type: dgst
Ascii type: DisplayGroupState
Binary size: 4
Parent Objects: ALWAYS: DisplayGroup, OrderedDisplayGroup
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
This piece of data is a subobject only to objects of type display group. It affects how a display group is
traversed. These flags allow any display group to have the following characteristics:

To have invisible objects in a scene which may act as user interface items, or may aid in bounding
complex geometries
To have non-user interface items which may serve only as decoration and should not be picked.
To have a group of shaders/attributes which affects the state as an inline group so it may be instantiated
and inherited in many parts of a hierarchy.

Data structure:
DisplayGroupStateFlags traversalFlags

DisplayGroupStateFlags is:

Binary Text
0x00000000 None
0x00000001 Inline
0x00000002 DoNotDraw
0x00000004 NoBoundingBox
0x00000008 NoBoundingSphere
0x00000010 DoNotPick

default is:

Binary Text
0x00000000 None

Text samples:

to pick a chess piece by a box around it

BeginGroup (DisplayGroup ())
 PickIDStyle (1)
 BeginGroup (
 DisplayGroup ()
 DisplayGroupState (DoNotDraw)
)
 Scale (2 4 2)

 Box ()
 EndGroup ()

 Container (
 DisplayGroup ()
 DisplayGroupState (DoNotPick)
)
 Mesh (# chess piece
 56 # nVertices
 0.2 0.3 0.5
 ...
)
 EndGroup ()
EndGroup ()

General Polygon Hint

Full name: Data, GeneralPolygonHint
Drawable: No
Parent Class Heirarchy: Data
Binary type: gplh
Ascii type: GeneralPolygonHint
Binary size: 4
Parent Objects: ALWAYS: GeneralPolygon
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The GeneralPolygonHint gives a reading application some hint of what shape a general polygon is.

A Complex general polygon may contain intersecting, concave, or convex polygons.

A Concave general polygon contains no intersecting polygons, but contains 1 or more concave
polygons.

A Convex general polygon indicates that all contained polygons are convex and non-intersecting.

Data structure:
GeneralPolygonHintEnum shapeHint

GeneralPolygonHintEnum is:

Binary Text
0x00000000 Complex
0x00000001 Concave
0x00000002 Convex

default is:
Complex

Text samples:

Container (
 GeneralPolygon (
 1
 3
 0 2 3
 0 2 1
 2 0 0
)
 GeneralPolygonHint (Convex)
)

Light Data

Full name: Data, LightData
Drawable: No
Parent Class Heirarchy: Data
Binary type: lght
Ascii type: LightData
Binary size: 20
Parent Objects: ALWAYS: any Light: SpotLight, AmbientLight, PointLight, DirectionalLight
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The light data object affects information about a light that is common among all lights.

A light may be on or off, may vary in intensity, or may have different colors.

Data structure:
Boolean isOn
Float32 intensity
ColorRGB color

0 intensity 1

Default is:
True # isOn
1.0 # intensity
1 1 1 # color

Text samples:

Container (
 AmbientLight ()
 LightData (
 True
 0.4
 1 0 0
)
)

Mesh Corners

Full name: Data, MeshCorners
Drawable: No
Parent Class Heirarchy: Data
Binary type: crnr
Ascii type: MeshCorners
Binary size: 4 + sizeof(corners[0..nCorners-1]) sizeof(MeshCorner) = 8 + nFaces * 4
Parent Objects: ALWAYS: Mesh
Format: Data Format
Subobjects: nCorners AttributeSets (order-dependent)
Inherited: No
Referencable: No

Description:
Mesh Corners allow you to attach AttributeSets to a mesh vertex, to allow for attributes to be associated
with a particular face-vertex pair. This may be used to allow sharp corners in an object (diagram above),
to set different shading parameters for adjacent faces, etc.

Mesh corners supplies a vertex index, a list of face indices, and a vertex attribute set for each corner.

The mesh corners object most often appears inside a container, and always has AttributeSet subobjects.
The first corner in the mesh corners data is mapped to the first attribute set subobject, the second corner
to the second attribute set, etc.

Data structure:
Uns32 nCorners
MeshCorner corners[nCorners]

0 < nCorners
where MeshCorner is:

Uns32 vertexIndex
Uns32 nFaces
Uns32 faces[nFaces]

0 < nFaces

Text samples:

Container (
 Mesh (
 ...
)
 Container (
 MeshCorners (
 2 # numCorners

 # Corner 0
 5 # vertexIndex
 2 # faces
 25 26 # face indices

 # Corner 1
 5 # vertexIndex
 2 # faces
 23 24 # face indices
)
 Container (
 AttributeSet ()
 Normal (-0.2 0.8 0.3)
)
 Container (
 AttributeSet ()
 Normal (-0.7 -0.1 0.4)
)
)
)

Mesh Edges

Full name: Data, MeshEdges
Drawable: No
Parent Class Heirarchy: Data
Binary type: edge
Ascii type: MeshEdges
Binary size: 4 + sizeof(corners[0..nCorners-1]) sizeof(MeshEdges) = 2 * sizeof(Uns)
Parent Objects: ALWAYS: Mesh
Format: Data Format
Subobjects: nCorners AttributeSets (order-dependent)
Inherited: No
Referencable: No

Description:
Mesh Edges allow you to attach AttributeSets to a mesh edge.

You may attach mesh edges to any edge in the mesh that corresponds to a face edge. To specify and

edge that should have an attribute set attached to it, include it as the nth edge the list of edges, and
specify the attribute set as the nth attribute set subobject.

Data structure:
Uns32 nEdges
MeshEdge edges[nEdges]

0 < nEdges
where MeshEdge is:

Uns32 vertexIndex1
Uns32 vertexIndex2

Text samples:

Container (
 Mesh (
 ...
)
 Container (
 MeshEdges (
 2 # numEdges
 0 1 # 1st edge vertexIndices
 1 2 # 2nd edge vertexIndices
)
 Container (/* 1st edge attribute set */
 AttributeSet ()
 DiffuseColor (0.2 0.8 0.3)
)
 Container (/* 2nd edge attribute set */
 AttributeSet ()
 DiffuseColor (0.8 0.2 0.3)
)
)
)

NURB Curve 2D

Full name: Data, NURBCurve2D
Drawable: No
Parent Class Heirarchy: Data
Binary type: nb2c
Ascii type: NURBCurve2D
Binary size: 8 + 12 * nPoints + 4 * (order + nPoints)
Parent Objects: ALWAYS: TrimCurves
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The NURB Curve 2D is a subobject of the TrimCurves object, and supplies a 2 dimensional curve to
trim NURB Patches.

Data structure:
Uns32 order
Uns32 nPoints
RationalPoint3D points[nPoints]
Float32 knots[order + nPoints]

2 order
2 nPoints
0 < points[...].w (weights of points)

Text samples:

Shader Data

Full name: Data, ShaderData
Drawable: No
Parent Class Heirarchy: Data
Binary type: shdr
Ascii type: ShaderData
Binary size: 8
Parent Objects: ALWAYS: any Shader
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The shader data initializes boundary wrapping conditions for a shader.

Data structure:
ShaderUVBoundaryEnum uBounds
ShaderUVBoundaryEnum vBounds

ShaderUVBoundaryEnum is:

Binary Text
0x00000000 Wrap
0x00000001 Clamp

default is:
Wrap Wrap

Text samples:

Container (
 CustomShader (...)
 ShaderData (Wrap Clamp)
)

Shader Transform

Full name: Data, ShaderTransform
Drawable: No
Parent Class Heirarchy: Data
Binary type: sdxf
Ascii type: ShaderTransform
Binary size: 64
Parent Objects: ALWAYS: any Shader
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
This transforms a shaded object into another world space coordinate system. It does not affect how the
object is drawn, or the current state of the hierarchy.

Data structure:
Matrix4x4 shaderTransform

Text samples:

Container (
 3DMarbleShader ()
 ShaderTransform (
 1 0 0 0
 0 1 0 0
 0 0 1 0
 2 3 4 1
)
)
...
Type (-3 Apple:ATG:3DMarbleShader)
Container (
 -3 (2.3 1.0 -10)
 ShaderTransform (
 1 0 0 0
 0 1 0 0
 0 0 1 0
 2 3 4 1
)
)

Shader UV Transform

Full name: Data, ShaderUVTransform
Drawable: No
Parent Class Heirarchy: Data
Binary type: sduv
Ascii type: ShaderUVTransform
Binary size: 36
Parent Objects: ALWAYS: any Shader
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The Shader UV transform allows the uvs on a geometric object to be transformed before shading occurs.

This allows you to rotate a texture map, for example.

Data structure:
Matrix3x3 matrix

Text samples:

Container (
 TextureShader ()
 ShaderUVTransform (
 1 0 0
 0 1 0
 0.2 0.3 1
)
 PixmapTexture (
 ...
)
)

Trim Curves

Full name: Data, TrimLoop
Drawable: No
Parent Class Heirarchy: Data
Binary type: trml
Ascii type: TrimLoop
Binary size: 0

Parent Objects: ALWAYS: NURBPatch
Format: No Data
Subobjects: many NURBCurve2D (order-dependent)
Inherited: No
Referencable: No

Description:
The Trim Loop subobject allows users to attach trimming loops to a NURB Patch. The Trim Loop
object contains no data, and serves only as an encapsulation of various 2-dimensional curves used for
trimming.

The Trim loop object contains a sequence of 2 dimensional curves which are concatenated together to
form a loop. The subobjects are order-dependent. Each trim loop subobject should contain loops that are
geometrically continuous, meaning the first trim curves end point ends at the next trim curves starting
point.

In the metafile version 1.0, the only 2-dimensional curve allowed is a NURBCurve2D.

In future releases of the metafile, we expect to add additional types of 2d trim curves for trimming
NURBS.

Data structure:

Text samples:

Container (
 NURBPatch (
 4 4 4 4 # u,v order, num M,N points
 -2 2 0 1 -1 2 0 1 1 2 0 1 2 2 0 1
 -2 2 0 1 -1 2 0 1 1 0 5 1 2 2 0 1
 -2 -2 0 1 -1 -2 0 1 1 -2 0 1 2 -2 0 1
 -2 -2 0 1 -1 -2 0 1 1 -2 0 1 2 -2 0 1
 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 # knots
)
 Container (
 TrimLoop ()
 NURBCurve2D (
 ...
)
 NURBCurve2D (
 ...
)
)
)

Image Clear Color

Full name: Data, ViewHintsData, ImageClearColor
Drawable: No

Parent Class Heirarchy: Data, ViewHintsData
Binary type: imcc
Ascii type: ImageClearColor
Binary size: 12
Parent Objects: ALWAYS: ViewHints
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
This specifies the preferred rgb color with should be used to clear the drawing areas background.

Data structure:
ColorRGB clearColor

Text samples:

3DMetafile (1 0 Normal toc>)
Container (
 ViewHints ()
 ImageClearColor (1 1 1) # white
)
Box ()

Image Dimensions

Full name: Data, ViewHintsData, ImageDimensions
Drawable: No
Parent Class Heirarchy: Data, ViewHintsData
Binary type: imdm
Ascii type: ImageDimensions
Binary size: 8
Parent Objects: ALWAYS: ViewHints
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The image dimensions specifies the preferred image width and height in bits. It is a subobject of the
view hints, which aids an application in determining how to display an image.

Data structure:
Uns32 width
Uns32 height

0 < width
0 < height

Text samples:

3DMetafile (1 0 Normal toc>)
Container (
 ViewHints ()
 ImageDimensions (32 32)
 ImageClearColor (1 1 1)
)
Rotate (X 0.75)
Rotate (Y 0.75)
Container (
 AttributeSet ()
 DiffuseColor (1 0 0)
)
Box ()

Image Mask

Full name: Data, ViewHintsData, ImageMask
Drawable: No
Parent Class Heirarchy: Data, ViewHintsData
Binary type: immk
Ascii type: ImageMask
Binary size: 12 + (rowBytes * height) + padding
Parent Objects: ALWAYS: ViewHints
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The image mask is a bitmap that specifies how an images rendered pixels should be clipped. The origin
of the bitmap (the upper-left) is aligned with the origin (upper left) of the drawing area. Generally, the
image mask and the image dimensions are used simultaneously to specify an image which is partially
clipped.

The example to the right specifies a mask to clip a 32x32 image. The application using this data uses this
clip mask to only render to a clipped portion of a custom document icon in this case, the bitmap will
only draw inside of a document icon, providing a small preview in the Finder with a black document
icon. The image mask to the right was used to render the example above.

Data structure:
Uns32 width
Uns32 height
Uns32 rowBytes

EndianEnum bitOrder
RawData image[rowBytes * height]

width, height in bits
0 < width
0 < height
((width >> 3) + ((width & 0x7) ? 1 : 0)) rowBytes
EndianEnum is:

Binary Text
0x00000000 BigEndian
0x00000001 LittleEndian

Text samples:

3DMetafile (1 0 Normal toc>)
Container (
 ViewHints ()
 ImageDimensions (32 32)
 ImageClearColor (1 1 1)
 ImageMask (
 32 32 # width, height
 4 # rowBytes
 BigEndian # bitOrder
 0x000000000FFFF8000FFFF8000FFFF800
 0x0FFFF8000FFFF8000FFFF8000FFFFFE0
 0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0
 0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0
 0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0
 0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0
 0x0C61FFE00F24FFE00E64FFE00F24FFE0
 0x0F24FFE00C61FFE00FFFFFE000000000
)
)
Rotate (X 0.25)
Rotate (Y 0.23)
Container (
 Torus (0 0.7 0 0 0 1 1 0 0 0 0 0 0.7)
 Container (
 AttributeSet ()
 DiffuseColor (0.2 0.9 0.9)
)
)

Ambient Coefficient

Full name: Element, Attribute, AmbientCoefficient
Drawable: No
Parent Class Heirarchy: Element, Attribute
Binary type: camb
Ascii type: AmbientCoefficient
Binary size: 4

Parent Objects: ALWAYS: AttributeSet
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The ambient coefficient describes the intensity of the ambient light that is reflected by a surface.

Data structure:
Float32 ambientCoefficent

0 ambientCoefficient 1.0

Text samples:

Container (
 AttributeSet ()
 AmbientCoefficient (0.7)
)

Diffuse Color

Full name: Element, Attribute, DiffuseColor
Drawable: No
Parent Class Heirarchy: Element, Attribute
Binary type: kdif
Ascii type: DiffuseColor
Binary size: 12
Parent Objects: ALWAYS: AttributeSet
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The diffuse color indicates the amount of diffuse light reflected by a surface.

Data structure:
ColorRGB diffuseColor

Text samples:

Container (
 AttributeSet ()
 DiffuseColor (1 0 0) # red
)

Highlight State

Full name: Element, Attribute, HighlightState
Drawable: No
Parent Class Heirarchy: Element, Attribute
Binary type: hlst
Ascii type: HighlightState
Binary size: 4
Parent Objects: ALWAYS: AttributeSet
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The highlight state attribute, when true, indicates that the current attribute state is overridden with the
current highlight styles attribute set. The highlight state attribute allows various portions of a geometry
object to be highlighted for user interface, etc. while retaining the integrity of a geometrys attribute set.

Data structure:
Boolean highlighted

Text samples:

Container (
 HighlightStyle ()
 Container (
 AttributeSet ()
 DiffuseColor (1 0 0) # RED
)
)
...
Container (
 Polygon (
 3
 0 1 2
 0 0 0
 0 -1 2
)
 Container (
 AttributeSet ()
 DiffuseColor (0 1 2)
 HighlightState (True)
 # polygon is drawn RED
)
)

Normal

Full name: Element, Attribute, Normal
Drawable: No
Parent Class Heirarchy: Element, Attribute
Binary type: nrml
Ascii type: Normal
Binary size: 12
Parent Objects: ALWAYS: AttributeSet
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
If normal is not of unit length upon reading, it should be normalized. (npi)

The normal indicates the surface normal at a vertex.

Data structure:
Vector3D normal

|normal| = 1

Text samples:

Container (
 Polygon (
 5
 0.23423 0.56434 0.2312
 ...
)
 Container (
 VertexAttributeSetList (5 Exclude 0)
 Container (
 AttributeSet ()
 Normal (0.8 -0.1 -0.1)
)
)
)

Shading UV

Full name: Element, Attribute, ShadingUV
Drawable: No
Parent Class Heirarchy: Element, Attribute
Binary type: shuv
Ascii type: ShadingUV

Binary size: 8
Parent Objects: ALWAYS: AttributeSet
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The shading UV indicates an alternate UV to the Surface UV for shading purposes.

Shading UVs are generally used by shaders that affect appearance information, such as texture maps,
which alter the color on a geometric surface.

Surface UVs are generally used for trimming.

Data structure:
Param2D shadingUV

Any UV parametrization is allowed, however, shading generally occurs with the following values.

0 shadingUV.u 1
0 shadingUV.v 1

Text samples:

Container (
 AttributeSet ()
 ShadingUV (0 0)
)

Specular Color

Full name: Element, Attribute, SpecularColor
Drawable: No
Parent Class Heirarchy: Element, Attribute
Binary type: kspc
Ascii type: SpecularColor
Binary size: 12
Parent Objects: ALWAYS: AttributeSet
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The specular color indicates the color of specular highlights on a surface.

Data structure:
ColorRGB specularColor

Text samples:

Container (
 AttributeSet ()
 DiffuseColor (0.1 0.1 0.1) # near-black
 SpecularColor (1 1 1) # white
)
Sphere (
 0 0 0
 0 1 0
 1 0 0
 0 0 1
)

Specular Control

Full name: Element, Attribute, SpecularControl
Drawable: No
Parent Class Heirarchy: Element, Attribute
Binary type: cspc
Ascii type: SpecularControl
Binary size: 4
Parent Objects: ALWAYS: AttributeSet
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The specular control attribute indicates the power to which the specular component of lighting
computations is raised.

Data structure:
Float32 specularControl

0 specularControl

Text samples:

Container (
 AttributeSet ()
 DiffuseColor (0.5 0.5 0.5) # near-black
 SpecularColor (0.5) # white highlights
 SpecularControl (1) # larger highlight area
)

Sphere ()

Surface Tangent

Full name: Element, Attribute, SurfaceTangent
Drawable: No
Parent Class Heirarchy: Element, Attribute
Binary type: srtn
Ascii type: SurfaceTangent
Binary size: 24
Parent Objects: ALWAYS: AttributeSet
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The surface tangent attribute indicates the direction of changing U and V on a surface.

Data structure:
Vector3D paramU
Vector3D paramV

Text samples:

Container (
 Mesh (
 ...
)
 Container (
 VertexAttributeSetList (
 ...
)
 Container (
 AttributeSet ()
 SurfaceUV (0.1 0.293)
 SurfaceTangent (
 1 0 0
 0 1 0
)
)
)
)

Surface UV

Full name: Element, Attribute, SurfaceUV

Drawable: No
Parent Class Heirarchy: Element, Attribute
Binary type: sruv
Ascii type: SurfaceUV
Binary size: 8
Parent Objects: ALWAYS: AttributeSet
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The surface UV indicates an alternate UV to the shading UV for shading purposes.

Surface UVs are generally used for trim shaders.

Shading UVs are generally used by shaders that affect appearance information, such as texture maps,
which alter the color on a geometric surface.

Data structure:
Param2D surfaceUV

Any UV parametrization is allowed, however, shading generally occurs with the following values.

0 surfaceUV 1
0 surfaceUV 1

Text samples:

Container (
 Mesh (
 ...
)
 Container (
 VertexAttributeSetList (
 200 Include 4 10 21 22 11
)
 Container (
 AttributeSet ()
 SurfaceUV (0 0)
)
 Container (
 AttributeSet ()
 SurfaceUV (0 1)
)
 Container (
 AttributeSet ()
 SurfaceUV (1 1)
)
 Container (
 AttributeSet ()
 SurfaceUV (1 0)
)

)
)

Transparency Color

Full name: Element, Attribute, TransparencyColor
Drawable: No
Parent Class Heirarchy: Element, Attribute
Binary type: kxpr
Ascii type: TransparencyColor
Binary size: 12
Parent Objects: ALWAYS: AttributeSet
Format: Data Format
Subobjects: none
Inherited: No
Referencable: No

Description:
The transparency color indicates the degree of light allowed to pass though the various channels (r,g,b)
of a surface.

A color of (1, 1, 1) indicates complete transparency (meaning 100% of the light behind an object is
allowed to pass through), a color of (0, 0, 0) indicates complete opacity (meaning no light passes
through an object.)

Data structure:
ColorRGB transparency

Text samples:

Container (
 Polygon (
 ...
)
 Container (
 AttributeSet ()
 TransparencyColor (1 0 0)
)
)

Generic Renderer

Full name: Shared, Renderer, GenericRenderer
Drawable: No
Parent Class Heirarchy: Shared, Renderer

Binary type: gnrr
Ascii type: GenericRenderer
Binary size: 0
Parent Objects: SOMETIMES: ViewHints
Format: No Data
Subobjects: none
Inherited: No
Referencable: Yes

Description:
A renderer that doesnt do anything, but may be used to accumulate state or for picking.

Data structure:

Text samples:

Container (
 ViewHints ()
 GenericRenderer ()
 ViewAngleAspectCamera (
 ...
)
 AmbientLight ()
 Container (
 AttributeSet ()
 DiffuseColor (0.2 0.2 0.2)
)
)

Interactive Renderer

Full name: Shared, Renderer, InteractiveRenderer
Drawable: No
Parent Class Heirarchy: Shared, Renderer
Binary type: ctwn
Ascii type: InteractiveRenderer
Binary size: 0
Parent Objects: SOMETIMES: ViewHints
Format: No Data
Subobjects: none
Inherited: No
Referencable: Yes

Description:
The interactive renderer.

This will be renamed later when the corresponding product is named.

Data structure:

Text samples:

Container (
 ViewHints ()
 InteractiveRenderer ()
 ViewAngleAspectCamera (
 ...
)
 AmbientLight ()
 Container (
 AttributeSet ()
 DiffuseColor (0.2 0.2 0.2)
)
)

Wire Frame Renderer

Full name: Shared, Renderer, WireFrame
Drawable: No
Parent Class Heirarchy: Shared, Renderer
Binary type: wrfr
Ascii type: WireFrame
Binary size: 0
Parent Objects: SOMETIMES: ViewHints
Format: No Data
Subobjects: none
Inherited: No
Referencable: Yes

Description:
A wireframe renderer.

Data structure:

Text samples:

Container (
 ViewHints ()
 Wireframe ()
 ViewAngleAspectCamera (
 ...
)
 AmbientLight ()
 Container (
 AttributeSet ()
 DiffuseColor (0.2 0.2 0.2)
)
)

Attribute Set

Full name: Shared, Set, AttributeSet
Drawable: No
Parent Class Heirarchy: Shared, Set
Binary type: attr
Ascii type: AttributeSet
Binary size: 0
Parent Objects: any AttributeSetList, any Geometry, any Group, any CapAttributeSet
Format: No Data
Subobjects: 1 AmbientCoefficient (optional) 1 DiffuseColor (optional) 1 HighlightState (optional) 1
Normal (optional) 1 ShadingUV (optional) 1 SpecularColor (optional) 1 SpecularControl (optional) 1
SurfaceTangent (optional) 1 SurfaceUV (optional) 1 TransparencyColor (optional) 1 SurfaceShader
(optional)
Inherited: No
Referencable: Yes

Description:
A attribute set groups sets of unique attributes together and is associated with a vertex, face, or an entire
geometry. Any object that is an Element may be placed in an attribute set.

An attribute set also may be placed in a group. The various attributes in an attribute set are inherited to
nodes lower than it in a hierarchy.

Data structure:

Text samples:

Container (
 Mesh (
 ...
)
 Container (
 VertexAttributeSetList (
 30 Exclude 2
 29 30
)
 ...
 Container (
 AttributeSet ()
 DiffuseColor (0 1 0)
 SurfaceUV (0.87 0.57)
)
 ...
)
)

Orthographic Camera

Full name: Shared, Shape, Camera, OrthographicCamera
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Camera
Binary type: orth
Ascii type: OrthographicCamera
Binary size: 16
Parent Objects: SOMETIMES: ViewHints
Format: Data Format
Subobjects: 1 CameraPlacement (optional, default) 1 CameraViewPort (optional, default) 1
CameraRange (optional, default)
Inherited: No
Referencable: Yes

Description:
The lens characteristics are set with the dimensions of a rectangular view port in the frame of the
camera.

Data structure:
Float32 left
Float32 top
Float32 right
Float32 bottom

left < right
bottom < top

Text samples:

OrthographicCamera (
 -1 -1 1 1
)

Container (
 OrthographicCamera (
 -1 -1 1 1
)
 CameraPlacement (
 0 0 20
 0 0 0
 1 0 0
)
 CameraRange (
 1 25
)
)

View Angle Aspect Camera

Full name: Shared, Shape, Camera, ViewAngleAspectCamera
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Camera
Binary type: vana
Ascii type: ViewAngleAspectCamera
Binary size: 8
Parent Objects: SOMETIMES: ViewHints
Format: Data Format
Subobjects: 1 CameraPlacement (optional, default)1 CameraViewPort (optional, default)1
CameraRange (optional, default)
Inherited: No
Referencable: Yes

Description:
A perspective camera specified in terms of the minimum view angle and the aspect ratio of X to Y.

Data structure:
Float32 fieldOfView
Float32 aspectRatioXtoY

0 < fieldOfView
0 < aspectRatioXtoY

Text samples:

ViewAngleAspectCamera (
 1.7 1.0
)

Container (
 ViewAngleAspectCamera (
 1.7 1.0
)
 CameraPlacement (
 0 0 20
 0 0 0
 1 0 0
)
 CameraRange (
 1 25
)
)

View Plane Camera

Full name: Shared, Shape, Camera, ViewPlaneCamera

Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Camera
Binary type: vwpl
Ascii type: ViewPlaneCamera
Binary size: 20
Parent Objects: SOMETIMES: ViewHints
Format: Data Format
Subobjects: 1 CameraPlacement (optional, default)1 CameraViewPort (optional, default)1
CameraRange (optional, default)
Inherited: No
Referencable: Yes

Description:
A view plane camera is a view angle aspect camera specified in terms of an arbitrary view plane. This is
most useful when setting the camera to look at a particular object.

The viewPlane is set to distance from the camera to the object.

The halfWidth is set to half the width of the cross section of the object, and the halfHeight equal to the
halfWidth divided by the aspect ratio of the viewPort.

This is the only perspective camera with specifications for off-axis viewing, which is desirable for
scrolling.

Data structure:
Float32 viewPlane
Float32 halfWidthAtViewPlane
Float32 halfHeightAtViewPlane
Float32 centerXOnViewPlane
Float32 centerYOnViewPlane

0 < viewPlane
0 < halfWidthAtViewPlane
0 < halfHeightAtViewPlane
centerXOnViewPlane, centerYOnViewPlane may be any value

Text samples:

ViewPlaneCamera (
 ...
)

Container (
 ViewPlaneCamera (
 20
 15.0 15.0
 18 29
)
 CameraPlacement (
 0 0 20

 0 0 0
 1 0 0
)
 CameraRange (
 1 25
)
)

Box

Full name: Shared, Shape, Geometry, Box
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: box
Ascii type: Box
Binary size: 0 or 48
Parent Objects:
Format: Data Format
Subobjects: 1 FaceAttributeSetList (optional, nObjects = 6)1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
This is a rectangular parallelepiped

A size of zero indicates the default values, helpful in instantiating a unit-cube.

The Face Attribute Set List subobject assigns color to the following faces:

Face ^ orientation at origin + orientation
Face ^ orientation at origin
Face ^ majorAxis at origin + majorAxis
Face ^ majorAxis at origin
Face ^ minorAxis at origin + minorAxis
Face ^ minorAxis at origin

Basically, the faces perpendicular to the orientation direction are assigned first, then the majorAxis, then
the minorAxis.

Data structure:
Vector3D orientation
Vector3D majorAxis
Vector3D minorAxis
Point3D origin

For 0-sized objects, default is:

1 0 0 # orientation
0 1 0 # majorAxis
0 0 1 # minorAxis
0 0 0 # origin

Text samples:

Box ()

Box (
 2 0 0
 0 1 1
 2 3 0
 0 0 0
)

Container (
 Box ()
 Container (
 FaceAttributeSetList (
 6 Exclude 0
)
 Container (
 AttributeSet ()
 DiffuseColor (1 0 0)
)
 Container (
 AttributeSet ()
 DiffuseColor (0 1 1)
)
 Container (
 AttributeSet ()
 DiffuseColor (0 1 0)
)
 Container (
 AttributeSet ()
 DiffuseColor (1 0 1)
)
 Container (
 AttributeSet ()
 DiffuseColor (0 0 1)
)
 Container (
 AttributeSet ()
 DiffuseColor (1 1 0)
)
)
)

Cone

Full name: Shared, Shape, Geometry, Cone
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry

Binary type: cone
Ascii type: Cone
Binary size: 0 or 48
Parent Objects:
Format: Data Format
Subobjects: 1 Caps (optional, default) 1 FaceCapAttributeSet (optional) 1 BottomCapAttributeSet
(optional) 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
A cone may have a cap, and may have attributes assigned to the entire geometry, to the face cap, or to
the bottom cap.

The default parametrization is shown in the diagram.

Data structure:
Vector3D orientation
Vector3D majorAxis
Vector3D minorAxis
Point3D origin

For 0-sized objects, default is:

1 0 0 # orientation
0 1 0 # majorAxis
0 0 1 # minorAxis
0 0 0 # origin

Text samples:

Cone ()

Cone (
 2 0 0
 0 1 1
 2 3 0
 0 0 0
)

Container (
 Cone ()
 Caps (Bottom)
 Container (
 BottomCapAttributeSet ()
 Container (
 AttributeSet ()
 DiffuseColor (1 0 0)
)
)
 Container (
 FaceCapAttributeSet ()

 Container (
 AttributeSet ()
 DiffuseColor (1 1 0)
)
)
)

Cylinder

Full name: Shared, Shape, Geometry, Cylinder
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: cyln
Ascii type: Cylinder
Binary size: 0 or 48
Parent Objects:
Format: Data Format
Subobjects: 1 Caps (optional, default) 1 TopCapAttributeSet (optional) 1 FaceCapAttributeSet
(optional) 1 BottomCapAttributeSet (optional) 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
A cylinder may have either top or bottom caps, and may have attributes assigned to the entire geometry,
to the face cap, the bottom cap, or the top cap.

The default parametrization is shown in the diagram.

Data structure:
Vector3D orientation
Vector3D majorRadius
Vector3D minorRadius
Point3D origin

For 0-sized objects, default is:

1 0 0 # orientation
0 1 0 # majorAxis
0 0 1 # minorAxis
0 0 0 # origin

Text samples:

Cylinder ()

Cylinder (
 2 0 0
 0 1 1

 2 3 0
 0 0 0
)

Container (
 Cylinder ()
 Caps (Bottom | Top)
 Container (
 BottomCapAttributeSet ()
 Container (
 AttributeSet ()
 DiffuseColor (0 1 0)
)
)
 Container (
 FaceCapAttributeSet ()
 Container (
 AttributeSet ()
 DiffuseColor (1 0 1)
)
)
 Container (
 TopCapAttributeSet ()
 Container (
 AttributeSet ()
 DiffuseColor (1 1 0)
)
)
)

Disk

Full name: Shared, Shape, Geometry, Disk
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: disk
Ascii type: Disk
Binary size: 0 or 36
Parent Objects:
Format: Data Format
Subobjects: 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
This is an elliptical disk at the given origin with two vectors specifying the dimensions.

The default parametrization is shown in the diagram.

Data structure:
Vector3D majorRadius

Vector3D minorRadius
Point3D origin

For 0-sized objects, default is:

1 0 0 # majorRadius
0 1 0 # minorRadius
0 0 0 # origin

Text samples:

Disk ()

Disk (
 2 0 0
 0 1 1
 0 0 0
)

Container (
 Cylinder ()
 Caps (Bottom | Top)
 Container (
 BottomCapAttributeSet ()
 Container (
 AttributeSet ()
 DiffuseColor (1 0 1)
)
)
 Container (
 FaceCapAttributeSet ()
 Container (
 AttributeSet ()
 DiffuseColor (1 1 0)
)
)
 Container (
 AttributeSet ()
 DiffuseColor (1 1 0)
)
)

Ellipse

Full name: Shared, Shape, Geometry, Ellipse
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: elps
Ascii type: Ellipse
Binary size: 0 or 36
Parent Objects:
Format: Data Format

Subobjects: 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
This is an ellipse at the given origin with two vectors specifying its dimensions.

There is no default parametrization for an ellipse.

Data structure:
Vector3D majorAxis
Vector3D minorAxis
Point3D origin

For 0-sized objects, default is:

1 0 0 # majorAxis
0 1 0 # minorAxis
0 0 0 # origin

Text samples:

Ellipse ()

Ellipse (
 2 0 0
 0 1 1
 0 0 0
)

Container (
 Ellipse ()
 Container (
 AttributeSet ()
 DiffuseColor (1 1 0)
)
)

Ellipsoid

Full name: Shared, Shape, Geometry, Ellipsoid
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: elpd
Ascii type: Ellipsoid
Binary size: 0 or 48
Parent Objects:
Format: Data Format

Subobjects: 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
An ellipsoid may have an attribute set attached to it.

The default parametrization is shown in the diagram. V is zero to the left of majorRadius, and is 1 to the
right. U is zero at the orientation vector, and 0 at the bottom.

Data structure:
Vector3D orientation
Vector3D majorRadius
Vector3D minorRadius
Point3D origin

For 0-sized objects, default is:

1 0 0 # orientation
0 1 0 # majorRadius
0 0 1 # minorRadius
0 0 0 # origin

Text samples:

Sphere ()

Sphere (
 2 0 0
 0 1 1
 2 3 0
 0 0 0
)

Container (
 Sphere ()
 Container (
 AttributeSet ()
 DiffuseColor (1 1 0)
)
)

General Polygon

Full name: Shared, Shape, Geometry, GeneralPolygon
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: gpgn

Ascii type: GeneralPolygon
Binary size: 4 + sizeof(polygons[0..nCoutours-1]) sizeof(PolygonData) = 4 + nVertices * 12
Parent Objects:
Format: Data Format
Subobjects: 1 VertexAttributeSetList (optional, nObjects = nVertices[0] + ... + nVertices[nContours-1])
1 AttributeSet (optional) 1 GeneralPolygonHint (optional)
Inherited: No
Referencable: Yes

Description:
A general polygon is a polygon that may be convex or may contain holes. A general polygon also
assumes that all faces are planar within floating point tolerances.

Holes are indicated by specifying a contour of the generalPolygon in clockwise order.

Polygons that cross use the even-odd rule to specify holes (see diagram).

You may specify the complexity of a GeneralPolygon by adding a viewHints object.

Data structure:
Uns32 nContours
PolygonData polygons[nContours]

where PolygonData is:

Uns32 nVertices
Point3D vertices[nVertices]

0 < nContours
2 < nVertices

Text samples:

Container (
 GeneralPolygon (
 2 # nContours
 3 # nVertices
 -1 0 0
 1 0 0
 0 1.7 0
 3 # nVertices
 -1 0.4 0
 1 0.4 0
 0 2.1 0
)
 Container (
 VertexAttributeSetList (6 Exclude 2 0 4)
 Container (
 AttributeSet ()
 DiffuseColor (0 0 1)
)
 Container (

 AttributeSet ()
 DiffuseColor (0 1 1)
)
 Container (
 AttributeSet ()
 DiffuseColor (1 0 1)
)
 Container (
 AttributeSet ()
 DiffuseColor (1 1 0)
)
)
 Container (
 AttributeSet ()
 DiffuseColor (1 1 1)
)
)

Line

Full name: Shared, Shape, Geometry, Line
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: line
Ascii type: Line
Binary size: 24
Parent Objects:
Format: Data Format
Subobjects: 1 VertexAttributeSetList (optional, nObjects = 2) 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
Our basic line primitive is a line segment, a simple line drawn between two vertices.

Optional vertex attributes may be attached using a VertexAttributeSetList.

A set of attributes may be applied to the entire line segment by attaching an attribute set.

Data structure:
Point3D start
Point3D end

Text samples:

Line (0 0 0 1 0 0)

Container (
 Line (
 0 0 0

 1 0 0
)
 Container (
 VertexAttributeSetList (2 Exclude 0)
 Container (
 AttributeSet ()
 DiffuseColor (1 0 0)
)
 Container (
 AttributeSet ()
 DiffuseColor (0 0 1)
)
)
)

Marker

Full name: Shared, Shape, Geometry, Marker
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: mrkr
Ascii type: Marker
Binary size: 32 + (rowBytes * height) + padding
Parent Objects:
Format: Data Format
Subobjects: 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
The marker is used to rasterize bitmaps parallel to the viewing plane. They are used for annotation of an
image.

Data structure:
Point3D location
Int32 xOffset
Int32 yOffset
Uns32 width
Uns32 height
Uns32 rowBytes
EndianEnum bitEndian
RawData data[height * rowBytes]

0 < width
0 < height
(((width / 8) + ((width & 7) > 0)) rowBytes
EndianEnum is:

Binary Text
0x00000000 BigEndian
0x00000001 LittleEndian

Text samples:

 Container (
 Marker (
 0.5 0.5 0.5 # origin
 -28 # xOffset
 -3 # yOffset
 56 # width
 6 # height
 7 # rowBytes
 BigEndian # bitOrder
 0x7E3C3C667E7C18606066666066187C3C
 0x607E7C661860066066607C1860066666
 0x6066007E3C3C667E6618
)
 Container (
 AttributeSet ()
 DiffuseColor (0.8 0.2 0.6)
)
)

Mesh

Full name: Shared, Shape, Geometry, Mesh
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: mesh
Ascii type: Mesh
Binary size: 4 + nVertices * 12 + 8 + (nFaces+nContours) * sizeof(faces[0..nFaces+nContours-1]
sizeof(MeshFace) = sizeof(Int) + sizeof(Uns) * nFaceVertexIndices
Parent Objects:
Format: Data Format
Subobjects: 1 FaceAttributeSetList (optional, nObjects = nFaces) 1 VertexAttributeSetList (optional,
nObjects = nVertices) 1 MeshCorners (optional) 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
The mesh is used for representing complex topological objects. It contains enough information to
determine which polygonal faces are adjacent to each other without numerical ambiguity. This metafile
object contains topological as well as geometrical information.

A contour (hole) in a face is indicated by supplying a negative number for the number of vertices, and
adds a hole to the previous face that was not a contour.

The size of nFaceVertexIndices and faceVertexIndices is based on the value of nVertices.

We introduce a special subobject used only with the mesh, called MeshCorners. This object allows
multiple attribute sets to be attached to a single vertex, where each attribute set is bound to a set of
vertex-face pairs. It can be used to place a sharp edge in the mesh (if the attribute set contains a normal,
for instance).

Data structure:
Uns32 nVertices
Point3D vertices[nVertices]
Uns32 nFaces
Uns32 nContours
MeshFace faces[nFaces + nContours]

where MeshFace is:

Int32 nFaceVertexIndices
Uns32 faceVertexIndices[nFaceVertexIndices]

3 nVertices
3 nFaceVertexIndices

Text samples:

 Mesh (
 10 # nVertices
 -1 1 1
 -1 1 -1
 1 1 -1
 1 -1 -1
 1 -1 1
 0 -1 1
 -1 -1 0
 -1 -1 -1
 1 1 1
 -1 0 1
 7 # nFaces
 0 # nContours
 3 6 5 9
 5 7 6 9 0 1
 4 2 3 7 1
 4 2 8 4 3
 4 1 0 8 2
 5 4 8 0 9 5
 5 3 4 5 6 7
)

NURB Curve

Full name: Shared, Shape, Geometry, NURBCurve

Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: nrbc
Ascii type: NURBCurve
Binary size: 8 + (nPoints * 12) + ((nPoints + order) * 4)
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: No
Referencable: Yes

Description:
NURB curves are Non-Uniform Rational B-spline curves. A rational B-spline curve is a curve in 4D
space, which has been projected down to 3D space. Thus, the control points for a 3D rational curve have
four components - x, y, z, and w (usually known as the weight). For such a point, the corresponding
point in 3D space is (x/w, y/w, z/w)

Weights (w) are always positive.

Data structure:
Uns32 order
Uns32 nPoints
RationalPoint4D points[nPoints]
Float32 knots[order + nPoints]

2 order
2 nPoints
0 < points[...].w (weights of points)

Text samples:

 NURBCurve (
 4 7 # order, nPoints
 0 0 0 1 # points
 1 1 0 1
 2 0 0 1
 3 1 0 1
 4 0 0 1
 5 1 0 1
 6 0 0 1
 0 0 0 0 0.25 0.5 0.75 1 1 1 1 # knots
)

NURB Patch

Full name: Shared, Shape, Geometry, NURBPatch
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry

Binary type: nrbp
Ascii type: NURBPatch
Binary size: 16 + (16 * numColumns * numRows) + ((uOrder + numColumns) * 4) + ((vOrder +
numRows) * 4)
Parent Objects:
Format: Data Format
Subobjects: 1 TrimCurves (optional)
Inherited: No
Referencable: Yes

Description:
Non-Uniform Rational B-Spline (NURB) Patches are closed under projective transformations, can
represent quadrics exactly, and can be refined locally to allow additional detail.

The default parametrization is given by the knot vectors.

Weights (w) are always positive.

Data structure:
Uns32 uOrder
Uns32 vOrder
Uns32 numColumns
Uns32 numRows
RationalPoint4D points[numMPoints*numNPoints]
Float32 uKnots[uOrder + numColumns]
Float32 vKnots[vOrder + numRows]

2 numColumns
2 numRows
2 uOrder
2 vOrder
0 < points[...].w (weights of points)

Text samples:

 NURBPatch (
 4 4 4 4 # u,v order, num M,N points
 -2 2 0 1 -1 2 0 1 1 2 0 1 2 2 0 1
 -2 2 0 1 -1 2 0 1 1 0 5 1 2 2 0 1
 -2 -2 0 1 -1 -2 0 1 1 -2 0 1 2 -2 0 1
 -2 -2 0 1 -1 -2 0 1 1 -2 0 1 2 -2 0 1
 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 # knots
)

Point

Full name: Shared, Shape, Geometry, Point

Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: pnt
Ascii type: Point
Binary size: 12
Parent Objects:
Format: Data Format
Subobjects: 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
The basic point primitive is an infinitesimally small point in space. It is specified as a 3D point plus an
optional attribute set.

A 3D point has no default parametrization.

Data structure:
Point3D point

Text samples:

Point (0 1 2)

Polygon

Full name: Shared, Shape, Geometry, Polygon
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: plyg
Ascii type: Polygon
Binary size: 4 + nVertices * 12
Parent Objects:
Format: Data Format
Subobjects: 1 VertexAttributeSetList (optional, nObjects = nVertices) 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
The polygon is convex with no holes. To describe concave polygons or polygons with holes, use the
general polygon primitive.

The points that make up a polygons face are assumed to be planar within floating point tolerances.

Data structure:

Uns32 nVertices
Point3D vertices[nVertices]

2 nVertices

Text samples:

Polygon (
 4
 0 1 1
 0 -1 1
 0 -1 -1
 0 1 -1
)

Poly Line

Full name: Shared, Shape, Geometry, PolyLine
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: plyl
Ascii type: PolyLine
Binary size: 4 + nVertices * 12
Parent Objects:
Format: Data Format
Subobjects: 1 VertexAttributeSetList (optional, nObjects = nVertices) 1 GeometryAttributeSetList
(optional, nObjects = nVertices - 1) 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
An extension of the basic line primitive is a polyline, where simple lines are drawn between adjacent
points in a point list

A polyline is NOT closed, and the last point is never connected to the first point.

A polyline has no default parametrization.

Data structure:
Uns32 nVertices
Point3D vertices[nVertices]

2 nVertices

Text samples:

Container (

 PolyLine (
 4
 -1 -0.5 -0.25
 -0.5 1.5 0.45
 0 0 0
 1.5 1.5 1
)
 Container (
 AttributeSet ()
 DiffuseColor (0.4 0.2 0.9)
)
)

Torus

Full name: Shared, Shape, Geometry, Torus
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: tors
Ascii type: Torus
Binary size: 0 or 52
Parent Objects:
Format: Data Format
Subobjects: 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
The orientation length specifies the radius of the circular along the orientation vector of the torus
cross-section.

The major and minor axes are vectors to the center of the torus cross-section (as in the diagram).

The ratio is the change in the orientation length in the axial direction. A ratio of 2, for example, creates a
fatter torus cross-section along the major and minor axes, a ratio of 0.5 creates a fatter cross-section
along the orientation.

As far as anyone knows, the torus is useful for drawing donuts and bagels, and makes a great demo.

The default parametrization is shown in the diagram.

Data structure:
Vector3D orientation
Vector3D majorAxis
Vector3D minorAxis
Point3D origin
Float32 ratio

For 0-sized objects, default is:

1 0 0 # orientation
0 1 0 # majorAxis
0 0 1 # minorAxis
0 0 0 # origin
1 # ratio

Text samples:

Torus ()

Torus (
 2 0 0
 0 1 1
 2 3 0
 0 0 0
 1
)

Container (
 Torus ()
 Container (
 AttributeSet ()
 DiffuseColor (1 1 0)
)
)

Triangle

Full name: Shared, Shape, Geometry, Triangle
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: trng
Ascii type: Triangle
Binary size: 36
Parent Objects:
Format: Data Format
Subobjects: 1 VertexAttributeSetList (optional, nObjects = 3) 1 AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:
The most basic polygon is a triangle, which contains 3 points.

A VertexAttributeSetList may be used to attach attribute sets to the vertices (containing three vertex
attribute sets) or an optional AttributeSet may be added to attach to the face.

There is no default parametrization for a triangle.

Data structure:
Point3D vertices[3]

Text samples:

Container (
 Triangle (
 -1 -0.5 -0.25
 0 0 0
 -0.5 1.5 0.45
)
 Container (
 VertexAttributeSetList (3 Exclude 0)
 Container (
 AttributeSet ()
 DiffuseColor (1 0 0)
)
 Container (
 AttributeSet ()
 DiffuseColor (0 1 0)
)
 Container (
 AttributeSet ()
 DiffuseColor (0 0 1)
)
)
 Container (
 AttributeSet ()
 DiffuseColor (0.8 0.5 0.2)
)
)

Tri Grid

Full name: Shared, Shape, Geometry, TriGrid
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Geometry
Binary type: trig
Ascii type: TriGrid
Binary size: 8 + (nColumns * nRows * 12)
Parent Objects:
Format: Data Format
Subobjects: 1 FaceAttributeSetList (optional, nObjects = (numNVertices - 1) * (numMVertices - 1) * 2)
1 VertexAttributeSetList (optional, nObjects = numNVertices * numMVertices attribute sets) 1
AttributeSet (optional)
Inherited: No
Referencable: Yes

Description:

Points specified are given in row major order.

You may add a FaceAttributeSetList to attach a set of attributes for each of the triangles generated by
this primitive.

You may also add a VertexAttributeSetList to attach attributes to each vertex.

Data structure:
Uns32 nColumns
Uns32 nRows
Point3D points[numMVertices * numNVertices]

2 nColumns
2 nRows

Text samples:

Container (
 TriGrid (
 3 4 # nUVertices nVVertices
 -1 1 1 -0.5 1 0 0 1 0
 0.7 1 0.5 -1 0 0 -0.5 0 0.3
 0 0.2 0 0.5 0 0 -1 -1 0
 -0.5 -1 0 0 -1 0.1 0.2 -1.3 0.2
)
 Container (
 FaceAttributeSetList (12 Include 1 5)
 Container (
 AttributeSet ()
 DiffuseColor (1 0 0.5)
)
)
 Container (
 AttributeSet ()
 DiffuseColor (0.8 0.7 0.3)
)
)

Group

Full name: Shared, Shape, Group
Drawable: Yes
Parent Class Heirarchy: Shared, Shape
Binary type: grup
Ascii type: Group
Binary size: 0
Parent Objects: none
Format: No Data
Subobjects: none
Inherited: No

Referencable: Yes

Description:
The group is useful for grouping any type of shared objects together.

It is delimited by an end group object.

Data structure:

Text samples:

BeginGroup (Group ())
 CString (This is the first day of the rest of your life.)
 Torus ()
EndGroup ()

Display Group

Full name: Shared, Shape, Group, DisplayGroup
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Group
Binary type: dspg
Ascii type: DisplayGroup
Binary size: 0
Parent Objects:
Format: No Data
Subobjects: 1 DisplayGroupState (optional)
Inherited: No
Referencable: Yes

Description:
A display group contains only objects that are drawable.

A display group adds the ability to be traversed for various operations via the DisplayGroupState
subobject.

It is delimited by an end group object.

Data structure:

Text samples:

IO Proxy Display Group

Full name: Shared, Shape, Group, DisplayGroup, IOProxyDisplayGroup
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Group, DisplayGroup
Binary type: iopx
Ascii type: IOProxyDisplayGroup
Binary size: 0
Parent Objects:
Format: No Data
Subobjects: 1 DisplayGroupState (optional, default)
Inherited: No
Referencable: Yes

Description:
The IO proxy display group contains drawable objects that are similar representations of the same object
in different formats. For example, if it is known that a particular application does not understand
NURBPatchs, the writing application may write the NURBPatch in an IO proxy group along with a
mesh which is the tesselated NURBPatch.

The objects in a IO proxy display group appear in their preferencial order. The first object is the most
preferred representation, the last object the least. The first object that is understood by a reading
application should be used.

You may specify a group of objects inside a IOProxyDisplayGroup, as a group (up to its EndGroup)
delimiter is a single object.

It is understood that ONLY the first understood object in an IO proxy display group is traversed while
drawing, bounding, or picking.

In other words, if an IO proxy display group contains many objects, only one of them will be drawn
when it comes time to render an image, etc.

Data structure:

Text samples:

BeginGroup (IOProxyDisplayGroup ())
 Mesh (
 8
 0 0 0
 0 0 1
 0 1 0
 1 0 0
 1 1 0
 0 1 1
 1 0 1
 1 1 1
 ... etc.
)
 Box ()
EndGroup ()

BeginGroup (IOProxyDisplayGroup ())
 NURBPatch (# preferred object
 ...
)
 DisplayGroup () # 2nd choice object
 Translate (1 2 3)
 Box ()
 EndGroup ()
EndGroup ()

Ordered Display Group

Full name: Shared, Shape, Group, DisplayGroup, OrderedDisplayGroup
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Group, DisplayGroup
Binary type: ordg
Ascii type: OrderedDisplayGroup
Binary size: 0
Parent Objects:
Format: No Data
Subobjects: 1 DisplayGroupState (optional, default)
Inherited: No
Referencable: Yes

Description:
The ordered display group is simply a display group except that objects are sorted by type. Objects
always appear in an ordered group in the following order:

Transforms
Styles
AttributeSets
Shaders
Geometries
DisplayGroups

It is delimited by an end group object.

Data structure:

Text samples:

Info Group

Full name: Shared, Shape, Group, InfoGroup
Drawable: Yes

Parent Class Heirarchy: Shared, Shape, Group
Binary type: info
Ascii type: InfoGroup
Binary size: 0
Parent Objects: none
Format: No Data
Subobjects: none
Inherited: No
Referencable: Yes

Description:
An info group contains nothing but String objects. It is used to add human-readable information
pertaining to a files origin or history. A use that comes to mind is copyright notices.

The info group object should be preserved by a reading application, and appended with additional
information if a file is re-written.

It is delimited by an end group object.

Data structure:

Text samples:

BeginGroup (InfoGroup ())
 CString (
 Copyright 1995 Apple Computer, Inc.)
 CString (
 Author: Bonanza Jellybean)
EndGroup ()

Light Group

Full name: Shared, Shape, Group, LightGroup
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Group
Binary type: lghg
Ascii type: LightGroup
Binary size: 0
Parent Objects: none
Format: No Data
Subobjects: none
Inherited: No
Referencable: Yes

Description:
A light group contains nothing but lights.

It is delimited by an end group object.

Data structure:

Text samples:

BeginGroup (LightGroup ())
 AmbientLight ()
 DirectionalLight (1 0 0 False)
EndGroup ()

Ambient Light

Full name: Shared, Shape, Light, AmbientLight
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Light
Binary type: ambn
Ascii type: AmbientLight
Binary size: 0
Parent Objects:
Format: No Data
Subobjects: 1 LightData (optional, default)
Inherited: No
Referencable: Yes

Description:
An ambient light supplies light that comes from secondary reflections.

In lieu of other light sources, the ambient light illuminates the scene with a flat, uniform light.

Data structure:

Text samples:

AmbientLight ()

Container (
 AmbientLight ()
 LightData (
 EcTrue # isOn
 1.0 # intensity
 1 0 0 # red color
)
)

Directional Light

Full name: Shared, Shape, Light, DirectionalLight
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Light
Binary type: drct
Ascii type: DirectionalLight
Binary size:
Parent Objects:
Format: Data Format
Subobjects: 1 LightData (optional, defaults)
Inherited: No
Referencable: Yes

Description:
A directional light is far enough away from the scene that we may treat it as though it were infinitely far
away. This produces shading results faster than any other type of light (except ambient).

It is specified with a vector pointing in the same direction as the light rays, an attenuation and a boolean
value indicating whether this light casts shadows or not.

Data structure:
Vector3D direction
Boolean castsShadows

|direction| = 1.0

Text samples:

DirectionalLight (1 0 0 True)

Container (
 DirectionalLight (1 0 0 True)
 LightData (
 True
 0.4
 1 0 0
)
)

Point Light

Full name: Shared, Shape, Light, PointLight
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Light
Binary type: pntl
Ascii type: PointLight
Binary size:

Parent Objects:
Format: Data Format
Subobjects: 1 LightData (optional, defaults)
Inherited: No
Referencable: Yes

Description:
A point light is a light at an infinitesimally small point in space. It may be attenuated or it may cast
shadows.

Data structure:
Point3D location
Attenuation attenuation
Boolean castsShadows

where Attenuation is the structure:

Float32 c0
Float32 c1
Float32 c2

attenuation is computed, using d as the distance from location:

1
c0 + c1*d + c2 * d^2

0 < c0
0 < c1
0 < c2

attenuation is not clamped to [0,1] to allow for lighting washout (such as in a nuclear explosion)

Text samples:

PointLight (
 12 23 2
 0 0 1 # InverseDistanceSquared
 True
)

Container (
 PointLight (
 12 23 2
 0 0 1 # InverseDistanceSquared
 True
)
 LightData (
 True
 0.4
 1 0 0
)
)

Spot Light

Full name: Shared, Shape, Light, SpotLight
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Light
Binary type: spot
Ascii type: SpotLight
Binary size:
Parent Objects:
Format: Data Format
Subobjects: 1 LightData (optional, defaults)
Inherited: No
Referencable: Yes

Description:
A spot light radiates with a circular cone of light that tapers toward the edge of the cone.

The hotSpotAngle is the angle (in radians) from the axis of the spot light for which the spot light has
maximum, constant intensity. The outer angle is the angle for which the light falls to zero. Between
these two, the light intensity tapers to zero according to the FallOff enumerated type.

Data structure:
Point3D location
Vector3D orientation
Boolean castsShadows
Attenuation attenuation
Float32 hotAngle
Float32 outerAngle
FallOffEnum fallOff

|orientation| = 1

Attenuation is described in the Point Light

0 < hotAngle outerAngle

FallOffEnum is:

Binary Text
0x00000000 None
0x00000001 Linear
0x00000002 Exponential
0x00000003 Cosine

Text samples:

SpotLight (
 12 0 0
 0 1 0
 True
 0 0 1 # InverseDistanceSquared
 0.7 # hotAngle
 0.8 # outerAngle
 Cosine
)

Container (
 SpotLight (
 12 0 0
 0 1 0
 True
 0 0 1 # InverseDistanceSquared
 0.7 # hotAngle
 0.8 # outerAngle
 Cosine
)
 LightData (
 True
 0.4
 1 0 1
)
)

Lambert Illumination

Full name: Shared, Shape, Shader, IlluminationShader, LambertIllumination
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Shader, IlluminationShader
Binary type: lmil
Ascii type: LambertIllumination
Binary size: 0
Parent Objects:
Format: No Data
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
The lambertian illumination model.

Data structure:

Text samples:

LambertIllumination ()

Phong Illumination

Full name: Shared, Shape, Shader, IlluminationShader, PhongIllumination
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Shader, IlluminationShader
Binary type: phil
Ascii type: PhongIllumination
Binary size: 0
Parent Objects:
Format: No Data
Subobjects:
Inherited: Yes
Referencable: Yes

Description:
The phong illumination model.

Data structure:

Text samples:

PhongIllumination ()

Texture Shader

Full name: Shared, Shape, Shader, SurfaceShader, TextureShader
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Shader, SurfaceShader
Binary type: txsu
Ascii type: TextureShader
Binary size: 0
Parent Objects:
Format: No Data
Subobjects: 1 PixmapTexture (required)
Inherited: Yes
Referencable: Yes

Description:
The texture shader is used to perform shading using a texture (in this case, a PixmapTexture).

Data structure:

Text samples:

Container (
 TextureShader ()
 PixmapTexture (
 ...
)
)

Backfacing Style

Full name: Shared, Shape, Style, BackfacingStyle
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Style
Binary type: bckf
Ascii type: BackfacingStyle
Binary size:
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
The backfacing style tells a renderer how to clip backfacing polygons while rendering.

Data structure:
BackfacingEnum backfacing

where BackfacingEnum is:

Text Binary
0x00000000 Both
0x00000001 Culled
0x00000002 Flipped

Text samples:

BackfacingStyle (Culled)

Fill Style

Full name: Shared, Shape, Style, FillStyle
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Style

Binary type: fist
Ascii type: FillStyle
Binary size: 4
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
The fill style tells a renderer what parts of a polygon to draw.

Data structure:
FillStyleEnum fillStyle

where FillStyleEnum is:

Text Binary
0x00000000 Filled
0x00000001 Edges
0x00000002 Points
0x00000003 Empty

Text samples:

FillStyle (Edges)

Highlight Style

Full name: Shared, Shape, Style, HighlightStyle
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Style
Binary type: high
Ascii type: HighlightStyle
Binary size: 0
Parent Objects:
Format: No Data
Subobjects: 1 AttributeSet (required)
Inherited: Yes
Referencable: Yes

Description:
The highlight style sets the binding for highlighting features of a geometry via the HighlightState
attribute. The attribute set subobject sets the highlight attribute set.

Data structure:

Text samples:

Container (
 HighlightStyle ()
 Container (
 AttributeSet ()
 DiffuseColor (0 0 1)
)
)

Interpolation Style

Full name: Shared, Shape, Style, InterpolationStyle
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Style
Binary type: intp
Ascii type: InterpolationStyle
Binary size: 4
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
The interpolation style tells a renderer how to interpolate shading values on a polygon.

Data structure:
InterpolationStyleEnum interpolationStyle

where InterpolationStyleEnum is:

Binary Text
0x00000000 None
0x00000001 Vertex
0x00000002 Pixel

Text samples:

InterpolationStyle (Vertex)

Orientation Style

Full name: Shared, Shape, Style, OrientationStyle
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Style
Binary type: ornt
Ascii type: OrientationStyle
Binary size: 4
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
The Orientation style is used to change the orientation of polygons.

Data structure:
OrientationEnum orientation

where OrientationEnum is:

Binary Text
0x00000000 CounterClockwise
0x00000001 Clockwise

Text samples:

OrientationStyle (Clockwise)

Pick ID Style

Full name: Shared, Shape, Style, PickIDStyle
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Style
Binary type: pkid
Ascii type: PickIDStyle
Binary size: 4
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
The pick ID style is used to allow the user to insert ids within a hierarchy to aid in picking a hierarchy.

Data structure:
Uns32 id

Text samples:

PickIDStyle (23)

Pick Parts Style

Full name: Shared, Shape, Style, PickPartsStyle
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Style
Binary type: pkpt
Ascii type: PickPartsStyle
Binary size:
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
The pick parts style determines the level of granularity for picking.

Data structure:
PickPartsFlags pickParts

where PickPartsFlags is:

Text Binary
0x00000000 Object
0x00000001 Face
0x00000002 Edge
0x00000004 Vertex

default is:
Object

Text samples:

PickPartsStyle (Object | Vertex)

Receive Shadows Style

Full name: Shared, Shape, Style, ReceiveShadowsStyle
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Style
Binary type: rcsh
Ascii type: ReceiveShadowsStyle
Binary size: 4
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
The receive shadows style determines whether a geometry receives shadows when rendering. It is
coupled with the casts shadows field in all lights, excluding the ambient light.

Data structure:
Boolean receiveShadows

Text samples:

ReceiveShadowsStyle (True)

Subdivision Style

Full name: Shared, Shape, Style, SubdivisionStyle
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Style
Binary type: sbdv
Ascii type: SubdivisionStyle
Binary size: (subdivisionMethod == Constant) ? 12 : 8
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
The subdivision style tells a geometric decomposition the courseness of a geometric primitive
tesselation. There are three methods of subdivision: constant, world space, and screen space subdivision.

Constant subdivision supplies 2 integral values, which indicate the number of sections the u and v axes
of a decomposition should be divided into.

The Screen Space value indicates average size of a single polygon in a tesselation in screen space.

The world space value indicates the average size of a single polygon in a tesselation in world space.

Data structure:
This object has two forms, based on the subdivison method field:

for subdivisionMethod == WorldSpace or ScreenSpace the structure is:

SubdivisionMethodEnum subdivisionMethod
Float32 value1

for subdivisionMethod == Constant, the values are integral:

SubdivisionMethodEnum subdivisionMethod
Uns32 value1
Uns32 value2

where SubdivisionMethodEnum is:

Binary Text
0x00000000 Constant
0x00000001 WorldSpace
0x00000002 ScreenSpace

Text samples:

SubdivisionStyle (
 Constant 12 12
)

SubdivisionStyle (
 WorldSpace 50
)

SubdivisionStyle (
 ScreenSpace 50
)

Matrix Transform

Full name: Shared, Shape, Transform, Matrix
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Transform
Binary type: mtrx
Ascii type: Matrix
Binary size: 64
Parent Objects:

Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
A custom, invertible matrix transform.

Data structure:
Matrix4x4 matrix

matrix is invertible

Text samples:

Quaternion Transform

Full name: Shared, Shape, Transform, Quaternion
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Transform
Binary type: qtrn
Ascii type: Quaternion
Binary size: 16
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
The quaternion specifies three axes of rotation and a twist value.

Useful for user interface.

Data structure:
Float32 w
Float32 x
Float32 y
Float32 z

Text samples:

Quaternion (0.2 0.7 0.2 1.57)

Rotate Transform

Full name: Shared, Shape, Transform, Rotate
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Transform
Binary type: rott
Ascii type: Rotate
Binary size:
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
Rotate about the X, Y, or Z axes.

Data structure:
AxisEnum axis
Float32 radians

AxisEnum is:

Binary Text
0x00000000 X
0x00000001 Y
0x00000002 Z

Text samples:

Rotate (X 1.57)

Rotate About Axis Transform

Full name: Shared, Shape, Transform, RotateAboutAxis
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Transform
Binary type: rtaa
Ascii type: RotateAboutAxis
Binary size: 28
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes

Referencable: Yes

Description:
Rotate about an arbitrary axis in space.

Data structure:
Point3D origin
Vector3D orientation
Float32 radians

|orientation| = 1

Text samples:

RotateAboutAxis (
 20 0 0 # origin
 0 1 0 # orientation
 1.57 # radians
)

Rotate About Point Transform

Full name: Shared, Shape, Transform, RotateAboutPoint
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Transform
Binary type: rtap
Ascii type: RotateAboutPoint
Binary size: 20
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
To rotate about the X, Y, or Z axes at an arbitrary point in space.

Data structure:
AxisEnum axis
Float32 radians
Point3D origin

AxisEnum is:

Binary Text
0x00000000 X

0x00000001 Y
0x00000002 Z

Text samples:

Scale Transform

Full name: Shared, Shape, Transform, Scale
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Transform
Binary type: scal
Ascii type: Scale
Binary size:
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
A scale transform.

Data structure:
Vector3D scale

scale.x 0.0
scale.y 0.0
scale.z 0.0

Text samples:

Scale (1 1 2)

Translate Transform

Full name: Shared, Shape, Transform, Translate
Drawable: Yes
Parent Class Heirarchy: Shared, Shape, Transform
Binary type: trns
Ascii type: Translate
Binary size: 12
Parent Objects:
Format: Data Format

Subobjects: none
Inherited: Yes
Referencable: Yes

Description:
A translate transfrom.

Data structure:
Vector3D translate

Text samples:

Translate (1 2 100)

Unknown Binary

Full name: Shared, Shape, UnknownBinary
Drawable: Yes
Parent Class Heirarchy: Shared, Shape
Binary type: ukbn
Ascii type: UnknownBinary
Binary size: 12 +
Parent Objects:
Format: Data Format
Subobjects:
Inherited: No
Referencable: Yes

Description:
The unknown binary object is a way of transporting unknown data found in a binary file. It is an
encapsulated replica of the original data found in a binary metafile, containing the object type (an Int32),
the object size (in bytes), the byte order of the original file, and the data itself. The byte order is needed
if unknown data is transported across different processors, and allows for parsing endian-specific
primitives within the raw data block.

Unknown binary objects may be written in either the text or binary files.

When an unknown binary object is encountered in a metafile, it is up to the reading program to either:
transport the data around
validate it and convert it to a known object
discard the data

Unknown objects are inherently dirty, meaning you may assume the unknown binary object may contain
out-of-sync (bogus) information, as the original object may have been removed from its original context.

Data structure:
Int32 objectType
Uns32 objectSize
EndianEnum byteOrder
RawData objectData[objectSize]

Text samples:

UnknownBinary (
 1701605476
 4
 BigEndian
 0x0AB2
)

Unknown Text

Full name: Shared, Shape, UnknownText
Drawable: Yes
Parent Class Heirarchy: Shared, Shape
Binary type: uktx
Ascii type: UnknownText
Binary size: sizeof(name) + sizeof(data)
Parent Objects: any
Format: Data Format
Subobjects:
Inherited: No
Referencable: Yes

Description:
The unknown text object is a way of transporting unknown data found in a text file. It is an encapsulated
replica of the original data found in a text metafile, containing the object type (a String), and a text string
containing the original data. In some cases, white space and comments may have been stripped from the
contents field.

Unknown text objects may be written in either the text or binary files.

When an unknown text object is encountered in a metafile, it is up to the reading program to either:
transport the data around
validate it and convert it to a known object
discard the data

Unknown objects are inherently dirty, meaning you may assume the unknown text object may contain
out-of-sync (bogus) information, as the original object may have been removed from its original context.

Data structure:
String asciiName

String contents

Text samples:

UnknownText (
 Ellipsoid

)

Macintosh Path

Full name: Shared, Storage, MacintoshPath
Drawable: No
Parent Class Heirarchy: Shared, Storage
Binary type: macp
Ascii type: MacintoshPath
Binary size: sizeof(String)
Parent Objects: ALWAYS: Reference
Format: Data Format
Subobjects: none
Inherited: No
Referencable: Yes

Description:
The Macintosh path specifies the pathname of an external file reference using the pathname
specification found in the Inside Macintosh volumes. (essentially, a colon-based separator)

Data structure:
String pathName

Text samples:

Container (
 Reference (43)
 MacintoshPath (:::Foo:Bar:Models:Cheryl)
)

Unix Path

Full name: Shared, Storage, UnixPath
Drawable: No
Parent Class Heirarchy: Shared, Storage
Binary type: unix
Ascii type: UnixPath

Binary size: sizeof(String)
Parent Objects: ALWAYS: Reference
Format: Data Format
Subobjects: none
Inherited: No
Referencable: Yes

Description:
The unix path object serves as a way to reference files on a unix file system.

The path should obey naming standards for unix operating systems.

Data structure:
String unixPath

Text samples:

Container (
 Reference (23)
 UnixPath (./shaders.eb)
)

C String

Full name: Shared, String, CString
Drawable: No
Parent Class Heirarchy: Shared, String
Binary type: strc
Ascii type: CString
Binary size: sizeof(String)
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: No
Referencable: Yes

Description:
The CString is a way of embedding text in a metafile.

Other string types allow for internationalization.

The only allowable characters in a CString are 7-bit ASCII numbers.

The following characters may be escaped with the \ character:

’\a’, ’\b’, ’\f’, ’\n’, ’\r’, ’\t’, ’\v’, ’\’, ’\\’

Data structure:
String cString

Text samples:

CString (
 Copyright (c) 1994 Apple Computer, Inc.
)

Unicode

Full name: Shared, String, Unicode
Drawable: No
Parent Class Heirarchy: Shared, String
Binary type: uncd
Ascii type: Unicode
Binary size: 4 + length * 2
Parent Objects:
Format: Data Format
Subobjects: none
Inherited: No
Referencable: Yes

Description:
The unicode object is another way of embedding text in a metafile.

See UNICODE reference for details.

Data structure:
Uns32 length
RawData unicode[length * 2]

Text samples:

Unicode (
 6
 0x457363686572
)

Pixmap Texture

Full name: Shared, Texture, PixmapTexture
Drawable: No
Parent Class Heirarchy: Shared, Texture

Binary type: txpm
Ascii type: PixmapTexture
Binary size: 28 + rowBytes * height + padding
Parent Objects: SOMETIMES: TextureShader
Format: Data Format
Subobjects: none
Inherited: No
Referencable: Yes

Description:
A generic means of transferring pixmap data. Used in the Texture Shader.

Data structure:
Uns32 width
Uns32 height
Uns32 rowBytes
Uns32 pixelSize
PixelTypeEnum pixelType
EndianEnum bitOrder
EndianEnum byteOrder
RawData image[rowBytes * height]

0 < width
0 < height
0 < pixelSize < 32
width * pixelSize rowBytes
PixelTypeEnum is:

Binary Text
0x00000000 RGB8
0x00000001 RGB16
0x00000002 RGB24
0x00000003 RGB32

EndianEnum is:

Binary Text
0x00000000 BigEndian
0x00000001 LittleEndian

Text samples:

PixmapTexture (
 256 256 # width/height
 128 # rowBytes
 32 # pixelSize
 RGB24
 BigEndian BigEndian
 0x00123232...

 0x...
)

View Hints

Full name: Shared, ViewHints
Drawable: No
Parent Class Heirarchy: Shared
Binary type: vwhn
Ascii type: ViewHints
Binary size: 0
Parent Objects: none
Format: No Data
Subobjects: 1 Renderer (optional) 1 Camera (optional)many Lights (optional) 1 AttributeSet (optional)
1 ImageDimensions (optional) 1 ImageMask (optional) 1 ImageClearColor (optional)
Inherited: No
Referencable: Yes

Description:
The subobjects of the view hints object specifies the preferences supplied by a writing application when
rendering a scene.

The semantic to be followed when a view hints object is encountered in the metafile is that the view
hints is specified previous to a list of objects to be rendered to that particular view hints preference. The
subobjects of the view hints object are inherited from the previous view hints in a metafile.

For example, if a modelling application contains 10 camera locations for viewing various portions of a
scene, it would first store the default view as the first object in a metafile, then the group representing
the scene, then a view containing the second camera position, then a reference to the scene, etc.

Data structure:

Text samples:

3DMetafile (1 0 Normal toc>)
Container (
 ViewHints ()
 Container (
 ViewAngleAspect (0.73 1.0)
 CameraPlacement (
 0 0 30
 0 0 0
 0 1 0
)
)
 DirectionalLight (-0.7 -0.7 -0.65)
 Container (
 AttributeSet ()
 DiffuseColor (0.2 0.2 0.2)

 SpecularControl (3)
)
 ImageDimensions (200 200)
)
ref1:
BeginGroup (DisplayGroup ())
...
EndGroup ()
Container (
 ViewHints ()
 Container (
 ViewAngleAspect (0.73 1.0)
 CameraPlacement (
 0 10 0
 0 0 0
 0 1 0
)
)
)
Reference (1)

How to use your RS232 or IRDA port for Remote Control

Update History - skip to Introduction if this is your first visit

26/02/2001
FAQ page added

28/02/2001
FAQ No.2 updated to include extra information on component selection

26/08/2002
Theory updated
Hardware schematic and text updated
Software Section text and code updated (winsamp now version 1.3)
FAQ updated
***** This was a big update - please let me know if I’ve broken anything (that used to work!)

Introduction

Firstly, an apology. There is a lot to read on this page and I’m struggling to make it even slightly
visually appealing. If you feel that the subject is worthy of your attention, then I suggest you print
this page out or at least save it to disk, snag the zip file mentioned in the software section (not a big
download) then study it all offline.

Unlike some of my other stuff, this one is fairly serious. It is intended to introduce a concept and
demonstrate its application rather than present the definitive finished product, but having said
that, everything needed to get it working properly on a PC is included, with enough information
and flexibility to enable the software as supplied to be incorporated into much more elaborate
Windows front-ends if desired. The idea is not limited to PC platforms, however - most devices
with serial or IRDA ports are possible candidates for the technique as described, and samples
made on one platform should transfer easily to other platforms.

A number of people have done good work in the field of turning a PC into a ’learning’ universal
infrared remote control, for various appliances such as TVs, video recorders, satellite decoders
etc. The common methods appear to use either an IR detector and transmitter circuit attached to
the parallel port, or an ’intelligent’ device accepting high-level commands attached to a serial
port. A quick online search will turn up schematics, construction details, driver software and some
very attractive Windows front-ends for this purpose.

Following on from my Furby experiments (http://www.veg.nildram.co.uk/furby.htm), I set out to
prove that it is possible to control the TV etc using either an IRDA port or a standard RS232 port
with extremely minimalist hardware. The reasons were threefold. First, the challenge. Second, the
convenience or geek value - many PCs, PDAs and other devices already come with IRDA as
standard, wouldn’t it be nice to use it for something different. Third, DEVICE INDEPENDENCE
AND PORTABILITY OF SAMPLES - serial ports of one type or another are fairly ubiquitous,

more so than parallel ports anyway, and a drawback with sampling and playback through the
parallel port is the heavy dependence on processor speed and environment - samples made on one
speed of machine may not work reliably on a different speed of machine (no criticism intended,
but this is what I found when I tried it), so to have a good probability of success you have to
sample your remotes on the machine you intend to use for playing them back - consequently, you
can’t simply sample your Sony CD remote and send the file off to your pal in Greenland when he
loses his [ahaaa - until now :-)]. Also, most systems have more than one COM port, so it’s no great
hardship tying one of them up permanently for remote control. The next bit is a disclaimer of
sorts, then we’ll get on with the theory.

Disclaimer - Please read this - Important

What I am about to describe is my own original idea, my own software, my own project. As far as
I am aware, nobody else does it, or has done it, this way, but if they have, what can I say? Great
minds think alike? I am not intentionally ripping off anyone else’s work, and have worked long
and hard to get it into its present state, for my own amusement, with no prior knowledge that it
can or cannot be done or indeed that it has been attempted in this fashion. The ideas and software
have been put here because I thought you might be interested in how I did it. It all works as far as
I’m concerned, but I’m not asking or telling you to use it in any way, shape or form. The software
(should you choose to try it) can write small text and binary files containing sample information to
your disk, or whatever you run it from. Also, the Windows demo application keeps a couple of
settings in the Registry to enable it to remember preferences from one session to the next. None of
this should cause you any distress, but as with all things, it could always go horribly wrong, so you
have been warned. If you don’t want to risk using my software, you should be able to write your
own using the information in the theory section. Also be advised that there is a class of IR remote
control (so-called ’flash’ controls) which is not supported by the software in its present form, but
the project is still in a state of flux and I may add support later - the issue here is one of trying to
keep it simple enough for anyone to use when they don’t have the use of a proper ’scope - I’m sure
you don’t wish to become an expert on remotes (not that I am, but a certain amount of it
inevitably rubs off).

Anyway, with the software and hardware described, I routinely control a Toshiba TV, JVC video
recorder and Maspro satellite receiver either using a laptop irda port or a normal 232 port on my
desktop PC, using samples made from the original remotes and without having to know details of
the three different protocols actually employed by the devices. There is a good chance that most
other appliances will work equally well (’flash’ devices being known exceptions). If you can’t get a
device to work, the sampler software will at least provide information to help identify the problem
if you wish to look deeper into it.

Finally, if you would like me to investigate the implementation of this technique on other
platforms, you should send me non-returnable hardware and development software for the
experiments, and if you make a fortune based on the idea, I certainly wouldn’t mind you giving
me a share :-)

Blank Frank 24th November, 1999.

Theory - Updated 26th August, 2002

Ok. Now to the good bit. Without getting too technical, here is an idea of what’s going on and why.
Though there is a mind-bogglingly large selection of remote control protocols at the bit level,
based on quite a number of types of protocol at the packet level, the vast majority of ir remote
controls function by sending data at relatively low rates by transmitting bursts of (carrier) pulses
of various lengths with periods of silence inbetween, also of various lengths. The data is encoded in
the lengths of the bursts and silences, and receivers demodulate the carrier to recover the
baseband data. The carrier frequency is typically somewhere in the range 36 - 40 kHz, and
receivers are designed to allow signals of this frequency range through (+/- a few kHz) while
rejecting signals outwith this range in order to reject such things as strip lights.

You may wish to brush up on your serial port theory for this - lots of info online, maybe enough
on the Furby page. I make the assumption that most receivers will be happy with combs of pulses
at 38.4kHz, since they are designed round R-C filters and diode pumps (at least conceptually,
though most use one integrated device). I can achieve this by transmitting suitable characters at
115200 baud out of any serial port, so long as there are no gaps between characters. The precise
pattern for a comb is the character value 0xdb, at 115k2/8/e/2 (0x5b at 115k2/7/n/1 would also be
possible but would require data to be loaded into the uart more frequently). There is sufficient
tolerance in most receivers to cope with the effective 4-pulse granularity (or 3-pulse if 7/n/1) in the
comb. The next assumption I make is that out-of-frequency-band pulses will be rejected by the
receiver, so if I transmit 0xfe, still at 115k2/8/e/2, this will look like silence to the receiver. So that’s
the transmission part covered - by sending correctly-sized groups of characters with values 0xdb
and 0xfe, I can effectively construct an infrared stream which looks like it came from a ’real’
remote control from the receiver’s point of view, so long as I keep the uart continuously stuffed
with data. The timing is derived from the uart, not the raw speed of the PC or other host device,
and it is fairly easy to keep up.

Sampling works as follows. Using the very simple hardware described below, (or your own
equivalent - doesn’t need to be a handshake line, could be a joystick or printer input, for example),
I transmit a junk character (0xff as it happens, but it doesn’t matter) continuously out the serial
port with no gaps between characters. While waiting for each character to be transmitted, I
sample the IR input as frequently as possible (in my case a handshake line) and if I ever see an
’active’ condition on it (ie if IR is ever detected) I assume that there is a comb (36 - 40kHz) of data
being received from a remote control during this period, and if I don’t see activity I assume this is
a silent period. I grab a big array, with one bucket for each character time, and the buckets will
either be marked as active or silent. After a preset number of characters have been sent, I stop
grabbing and process the data. What I end up with is another array of buckets which contain
alternating active counts and silent counts, stored as numbers of character times, adjusted to
compensate for the inherent tendency of this method to round up comb lengths and round down
silence lengths. Arrays like this provide a compact method of sample storage, and are very easy to
play back when I want to transmit the sample as described above, and again, the timing is
absolute, based on the uart, not the processor raw speed, so it is accurate and repeatable. By
understanding the actual protocol used, it would be easy to compute the packets rather than store
samples as such and make the storage space requirement much smaller, but I’m trying to avoid
this to keep things simple and flexible. There are a few details to do with timeouts, sample sizes,

waiting for the data to start, suspending interrupts etc which will be explained elsewhere, but the
basic principle is very simple and apparently rock solid.

It is not possible to sample remotes through the IRDA port - at least with my software, but
probably not at all on a PC - due to the design of the port hardware. Samples have to be made
using a 232 port using the hardware described below, or equivalent, but this should not be a
problem. Playback through the IRDA port works fine so long as you are aware of the potential
pitfalls (again covered to some extent on my Furby page, and in particular relating to operation
under Windows).

I have run the same software on an 8MHz 286 (yes, I managed to find one that still works) and a
K6-2 333 and got the same results. Samples made on both extremes of machine look the same and
can be exchanged without problems. This suggests that the technique will work well on a wide
range of devices with serial ports, not just PCs. The actual sample-grabbing process is designed to
scream along, even on a slow machine, though the post-grab processing can take as much time as
it needs since it is not real-time critical.

Update 26th August, 2002
Things move on. Since writing the above section, PCs have got considerably faster. I am happy to
report that the system has now beem tested unchanged on Athlon 1000 boxes and above, without
problems, under Windows 95 / 98SE, and, from the feedback I’ve had, the project has been
constructed and run on a variety of PCs, and implemented on and some other platforms, in
various parts of the world.

Now the interesting news. I have figured out a way of retaining all the uart-derived timing
properties of transmission described above while achieving ’real’ silence during the silent periods
rather than the combs of out-of-frequency-band pulses which have been used up to now. It works
on all the PCs I can get my hands on. The latest version of the DOS program (version 1.3)
implements this and no longer has the option to switch in software timing loops to achieve (with
some calibration effort) the same effect. It takes advantage of some particular features of the PC
uart hardware, so I wouldn’t class it as a new method, rather as an optimisation aimed at PCs.
Since the vast majority of users are PC users, this new version should be of general interest,
though I stand by the original method as described above as the more general solution. I have to
say that I personally don’t have a problem using the original silence method with the receivers I’m
controlling, but this reworked version may be of some help with borderline cases, and this is now
the ’official version’ - I’ve moved over to it anyway, because it has a couple of other features I
wanted, which are described elsewhere in the docs.

If you are a first-time user of this project, don’t worry, just use the latest version of the software.

If you are an existing user of the system, there are several reasons why you might wish to install
the latest version. Firstly, real silence rather than silence combs should work with a larger
selection of equipment - the original silence combs might somewhat saturate the IR receiver or
indeed totally confuse some poorly-filtered equipment (always one of the known drawbacks of the
method), so the new method will hopefully improve the IR on/off contrast ratio and thus improve
the operating range or make it work properly with your target equipment for the first time.

Secondly, the data stream will be much easier to observe on a proper oscilloscope than it used to
be. Thirdly, you can do fun things like transmit a sample from one PC to another and get a close
match (I know, you could do it more easily using a floppy or whatever). Fourthly, the new
software has some helpful features in DOS-screen mode which make it easier to experiment,
diagnose problems and manipulate data sets. Fifthly, the average power consumption of
transmission is reduced, prolonging your battery life, saving the planet and so on. The main thing
here is I can see no downside. All you need to do is replace the DOS program - the change is
invisible to the Windows program, and any samples you already have remain totally compatible.
At worst, you get the benefit of the new features; at best you may also get better performance.

Hardware - Section updated 26th August, 2002

Here is a schematic for the hardware I use. This has been updated on 26th August, 2002 to include
the diode explained below. If you built yours before this date, and you think your LED might be
glowing slightly (in an IR sense) when it should be off, you should consider adding the diode even
if everything seems to work fine. It may give you improved performance. You can check to see if
you have the problem using a video camera or by measuring the current through the LED in the
idle state - don’t bother changing it if you don’t see the problem. Having said that, it only hit me
when I started playing with substitute transistors which were intended to be near-equivalents.

There are really two separate circuits, and it would be ok just to build the receiver section for
sampling and use the IRDA port for transmission. The receiver section takes the power it needs
from handshake lines (so no external source required in this configuration). The receiver range is

only a couple of cm, so the remote has to be close to work, but there is no particular reason why a
proper circuit shouldn’t be built which would operate over several metres, and indeed software
could be written to let the PC decode the signal properly, though it would be a non-starter as a
mouse substitute under Windows or whatever. There are additional notes about the driver
transistor (2N7000) on my Furby page (here).

The diode marked *NOTE* between the TX pin and the gate of the FET has been added because I
occasionally observed the LED to be slightly on when the TX line was low and the LED should
have been off, with the result that the on/off IR contrast ratio was reduced (and consequently
maybe the useful transmission range). There are a couple of possible explanations for the LED
being on, which I didn’t investigate further, opting rather to kill the problem once and for all by
including the diode. Shame really, because the tolerance to large positive and negative Vgs values
was one of the reasons I chose the FET in the first place. Anyway, the diode effectively prevents
the gate from going more negative than the source and the problem is gone. If you suspect that the
FET is not turning off fast enough with the 100k pulldown (due to extremely high gate / track
capacitance or whatever) you could safely reduce the resistor to 10k to see if that helps, but I have
no reason to think the change is needed.

The FAQ page has been updated, and now includes a couple of (untested) suggestions for
increasing the output of the transmitter, and the simple change needed in order to replace the
FET with a normal NPN transistor.

Software - section updated 26th August, 2002

There are now two versions of the software package available for download, and unless you have a
pressing desire to do comparisons between the original version (winsamp version 1.1) and the
current one (V1.3), you should ignore REMOTE11.ZIP (37k) and go for REMOTE13.ZIP (39k).
The packages contain versions of the same set of 5 files - MANYBUTT.EXE, BUTT1.BUT and
BUTT18.BUT are unchanged, WINSAMP.EXE and README.TXT have been updated in the
newer (remote13.zip) version. If you are updating your installation from 1.1 to 1.3, only the two
changed files need to be replaced (obviously). Just for information, V1.2 was an intermediate
version which was never published because I didn’t want to have to do two page and docs
revisions in quick succession, but you’re not missing anything because 1.3 contains all of 1.2 plus
extra features. At risk of repeating myself, the upgrade will not require you to do anything to your
existing sample files, does not change the command line interface, does not modify the settings of
the GUI (manybutt.exe), and only requires you to replace winsamp.exe (and the readme file, if you
want to keep things in step - and then probably only if you actually want to read it). Note that the
remainder of this section is virtually the same as what was here before, so there is no nead to read
it again if you’re already familiar with the contents.

The software here is enough to get you going both in dos and Windows95/98, but is not pretty,
clever or feature-laden. It goes some way beyond proving the point that the method works, but
falls well short of some of the applications which have been written around the parallel-port
system. It does everything I need it to do as far as controlling multiple devices and producing
platform-independent samples is concerned, so I have drawn the line there for the time being, but
I hope I will have provided enough information to allow anyone with an inclination towards

programming to write their own much nicer versions or to port the method to other platforms. I
have in mind some particular features I might add to the VB side to address some specific future
project requirements, but these are so far off the normal track that there would be little point in
trying to build them in to a general app, and anyway they still depend on utilising the same
dos-based core program.

How to get started

Click here to download REMOTE13.ZIP (39k) , a .zip file which contains five files -
WINSAMP.EXE, MANYBUTT.EXE, README.TXT, BUTT1.BUT and BUTT18.BUT. Create a
directory (wherever you want and whatever you want to call it) and put these into it.
WINSAMP.EXE is the main dos app, and is all you really need to get started. MANYBUTT.EXE
is my VB5 demo for Win95/98 which calls the dos program as required. The *.BUT files are
example buttons used by MANYBUTT.EXE. README.TXT is all the explanation and detail I
didn’t want to put on this page, written in plain text, and I only suggest that it be in the same
directory so it doesn’t get lost or overwrite any other file of the same name - it overlaps with this
file, but you would be expected to have both. This html file (REMOTE.HTM) and README.TXT
are expected to evolve as I find problems, develop the idea further and hopefully if and as I get
feedback. Create a shortcut to MANYBUTT.EXE on your desktop for convenience. You can also
create one for WINSAMP.EXE if you prefer to access it this way rather than from dos prompt,
but if you want to see what’s going on, it would be best if you make sure (by tweaking properties if
necessary) that it runs Full-Screen. Remember that if you want to run it on anything other than
COM2, you’ll need to edit the command line to WINSAMP.EXE Cx. You can actually look at and
fiddle with the software without having any sample/playback hardware. If you already built the
IR Thingy from the Furby page, you’re half way there hardware-wise, and if you managed to get
the Furby stuff working, there’s a very good chance this will work too. What I suggest is you save
this page or print it out, get the software and read the readme file, maybe have a look at the
programs then decide whether or not you can be bothered to build the hardware. If you get that
far, then go to dos prompt and run WINSAMP.EXE, using appropriate COM port selection and
start trying to sample remotes. If that seems to function, then use MANYBUTT.EXE from the
desktop - it’s a lot more convenient in the long run. Note that only COM1 - COM4 are supported
by WINSAMP.EXE, and that MANYBUTT.EXE does not touch the ports as such. MANYBUTT
simply passes a string, which the dos app uses to determine the hardware addresses it hits directly.

Some more detail

The main software (winsamp.exe, 21k) is a dos application which can be run in stand-alone mode
or shelled from Windows (tested with 95 and 98). It is not Windows-aware, and consequently
takes more processor time when idle than it really needs, but the normal way to use it under
Windows is to shell it with various command line options set, which causes it to start, do what you
want (eg grab a sample or play back a sample) then exit without any keyboard / mouse / screen
activity, so it’s normally only loaded briefly, and the program is so small that it takes a negligible
amount of time to load. Note that once a sample starts to arrive or starts to be played back,
interrupts are suspended until the operation has finished. In the case of sampling, the default
sample window is approx 250ms, but this can be pushed up to 500ms using command line options.
For playback, this time is the duration of the stored sample, which again can be controlled from

the command line but defaults to around 150ms and cannot exceed 500ms. Be aware that
suspending interrupts in order to make sure there are no gaps in the data streams will inevitably
result in system ticks being missed (I certainly hope so, this is one of the reasons for doing it), and
the result is that your clock will gradually lose time, depending on how much you use the software.
Sorry. An easy way round it would be to install one of these programs which syncs your PC to an
atomic clock every time you go online if it bothers you - to some, the ability to slow down time
might be seen as a bonus. A more messy way round it would be for me to attempt something clever
with the real-time-clock hardware following each interrupt suspension, but it doesn’t bother me
that much to lose a few seconds now and again - when the battery was going flat on my PC I used
to lose minutes per day and managed to cope, so this is nothing in comparison.

Because the interrupts are not suspended during sampling until the start of the IR stream from
the remote is detected, there is a very small chance that a system tick or similar might happen
between detection and the instruction which does the suspending. The chance of this happening is
extremely small, but becomes more possible on slower machines, and the ISR would probably take
longer to complete if it did happen. The effect of this would be that the recorded width of the first
comb would be smaller than it actually was, which would perhaps make the sample invalid on
playback for some protocols. I think I’ve seen this once in all the playing around during
development, but of course it might be that pressing the button on the remote causes it to move
into range of the receiver just at the critical time or whatever. I would suggest observing a few
samples on the sillyscope screen to get a feel for what a good sample looks like, and have a quick
look at the sample files to see if any are outstandingly different before burning them onto a million
CD Roms or whatever. And of course test the samples.

The most usual way to operate the program in ’real’ dos or dos prompt under Windows is to type
’WINSAMP’ or WINSAMP Cx where x is the COM port you want to use if the default of COM2
does not suit. A 80*50 text-mode screen is presented (which might not be compatible with _very_
old graphics cards, but if your machine can run Windows it should be ok), and this has lots of
things squished onto it. You need to read all the bits of writing on it because the user controls are
all hinted at somewhere there. For details of command line options, type WINSAMP ? and a
horrible text screen will appear, which might help. A separate README.TXT file is included
explaining the command line options and controls in more detail, along with examples of how to
make it work from Windows programs. I have also included a simple Windows front-end
demonstration written in VB5 which uses the dos app for all the low-level stuff. This is only the
actual .exe file - due to bandwidth restrictions I can’t put up a full distribution - the .exe is only a
few k, but all the support bits take up megs of space, so unless you already have VB5 or have
acquired the support files through other software installations you’ve done over the years, I’m
afraid you’re stuck, but there is a somewhat less satisfactory but quite functional method for
accessing the dos program under Windows using nothing more than program groups and
shortcuts which is explained in README.TXT.

It may be possible to rewrite the whole thing as a ’proper’ Windows application, but using the dos
program makes it relatively simple to achieve the necessary low-level hardware access and timing.
Certainly, VB or similar could be used to provide sophisticated sample management (archiving,
selection, grouping, exporting, importing etc), but I have only done enough to suit my own needs
for the time being.

I hope you like it.

I have added a FAQ page. I welcome feedback on the project, but if you have specific questions or
requests, please do me a favour and make sure they haven’t already been covered by this web
page, the docs or the FAQ. Your question and / or my response might be added in a generic and
unattributed sort of way to the next revision of the FAQ.

View my other offerings

Copyright? Possibly

RLE - Run Length
Encoding

Written by Paul Bourke
August 1995

Source code

Standard compression C source: rle.c
Example code based upon the above:
rletest.c

Introduction

Run length encoding is a straightforward way of encoding data so that it takes up less space. It is relies
on the string being encoded containing runs of the same character. Consider storing the following short
string.

 abcddddddcbbbbabcdef

There are 20 letters above, if each is stored as a single byte that is 20 bytes in all. However, the runs of
"d" and "b’ above can be stored as two bytes each, the first indicating how many letters in the run. For
example, the following run length encoded string takes only 14 bytes.

 abc6dc4babcdef

In general of course it needs to be a bit more sophisticated than the above. For example, there is no way
in the above encoding to encode strings with numbers, that is, how would one know whether the number
was the length of the run or part of the string content. Also, one would not want to encode runs of length
1 so how does one tell when a run starts and when a literal sequence starts.

The common approach is to use only 7 of the 8 bits to indicate the run length, this is normally
interpreted as a signed byte. If the length byte is positive it indicates a replicated run (run of the
following byte). If the number is negative then it indicates a literal run, that is, that number of following
bytes is copied as is. To illustrate this the following sequence of bytes would encode the example string
given above, it requires 17 bytes.

 -3 a b c 6 d -1 c 4 b 6 a b c d e f

While 17 bytes to encode what would take 20 without RLE may not sound like much, but as the
frequency and length of the repeating characters increases the compression ratio gets better.

Worst case

Of course RLE will not always result in a compression, consider a string where the next character is
different from the current character. Every 127 bytes will require a extra byte to indicate a new literal
run length.

Best case

The best case is when 128 identical characters follow each other, this is compressed into 2 bytes instead

of 128 giving a compression ratio of 64.

Example

For this reason RLE is most often used to compress black and white or 8 bit indexed colour images
where long runs are likely. RLE compression is therefore what was used for the original low colour
images expected for the Macintosh PICT file format. RLE is not generally used for high colour images
such as photographs where in general each pixel will vary from the last.

The following 3 images illustrate the different extremes, the first image contains runs along each row
and will compress well. The second image is the same as the first but rotated 90 degrees so there are no
runs giving worse case and a larger file. This suggests a natural extension to RLE for images, that is, one
compresses vertically and horizontally and uses the best, the flag indicating which one is used is stored
in the image header. The last case is the best scenario where the whole image is a constant value.

Original size: 10000 bytes
Compressed size: 5713 bytes

Ratio: 1.75

Original size: 10000 bytes
Compressed size: 10100

Ratio: 0.99

Original size: 10000 bytes
Compressed size: 200

Ratio: 50

Image comparison

Run length encoding is used within a number of image formats, for example PNG, TIFF, and TGA.
While RLE is normally used as a lossless compression, it can be assisted (to create small files) by
quantising the rgb values thus increasing the chances of runs of the same colour. There are two ways one
can run length encode the pixels, the first as used in the TGA format is to look for runs of all three
components, the other is to compress each colour plane seperately. The second approach normally gives
smaller files. Below is a table for two different images along with the file size for the image quantised to
different levels and saved in rgb order or planar order.

Image details and
quantisation level Image example RLE on RGB

(KBytes)
RLE on Planes
(KBytes)

Uncompressed 197 197

1 (none) 151 141

2 135 110

4 101 70

6 81 49

8 64 36

12 46 24.5

16 35 18.5

20 28 14.5

26 22 11.5

32 17.5 9.5

The above example was chosen because it doesn’t have long runs of equal colour and because any
banding due to quantisation should be obvious to spot. This occurs somewhere between 4 and 8
depending on how fussy one is. Note the planar compression works much better than the rgb based
compression.

Image details and
quantisation level Image example RLE on RGB

(KBytes)
RLE on Planes
(KBytes)

Uncompressed 197 197

1 (none) 195 190

2 188 173

4 163 140

6 142 119

8 127 106

12 105 88

16 86.5 74

20 92 73.5

26 74 60.5

32 60 50.5

Unlike the first example, because each of the colour layers in this images are "busy" the difference
between rgb and planar RLE compression is not so marked. Note that the visual artifacts that occur to so
on the wall where there is a smooth and subtle shade variation, even at the highest quantisation level the
artifacts on the vase are hard to pick.

RS232 Data Interface
 a Tutorial on Data Interface and cables

RS-232 is simple, universal, well understood and supported but it has some serious
shortcomings as a data interface. The standards to 256kbps or less and line lengths
of 15M (50 ft) or less but today we see high speed ports on our home PC running
very high speeds and with high quality cable maxim distance has increased greatly.
The rule of thumb for the length a data cable depends on speed of the data, quality
of the cable.

a Tutorial

Electronic data communications between elements will generally fall into two broad categories:
single-ended and differential. RS232 (single-ended) was introduced in 1962, and despite rumors
for its early demise, has remained widely used through the industry.

Independent channels are established for two-way (full-duplex) communications. The RS232
signals are represented by voltage levels with respect to a system common (power / logic ground).
The "idle" state (MARK) has the signal level negative with respect to common, and the "active"
state (SPACE) has the signal level positive with respect to common. RS232 has numerous
handshaking lines (primarily used with modems), and also specifies a communications protocol.

The RS-232 interface presupposes a common ground between the DTE and DCE. This is a
reasonable assumption when a short cable connects the DTE to the DCE, but with longer lines and
connections between devices that may be on different electrical busses with different grounds, this
may not be true.

RS232 data is bi-polar.... +3 TO +12 volts indicates an "ON or 0-state (SPACE) condition" while
A -3 to -12 volts indicates an "OFF" 1-state (MARK) condition.... Modern computer equipment
ignores the negative level and accepts a zero voltage level as the "OFF" state. In fact, the "ON"
state may be achieved with lesser positive potential. This means circuits powered by 5 VDC are
capable of driving RS232 circuits directly, however, the overall range that the RS232 signal may
be transmitted/received may be dramatically reduced.

The output signal level usually swings between +12V and -12V. The "dead area" between +3v and
-3v is designed to absorb line noise. In the various RS-232-like definitions this dead area may vary.
For instance, the definition for V.10 has a dead area from +0.3v to -0.3v. Many receivers designed
for RS-232 are sensitive to differentials of 1v or less.

This can cause problems when using pin powered widgets - line drivers, converters, modems etc.

These type of units need enough voltage & current to power them self’s up. Typical URART (the
RS-232 I/O chip) allows up to 50ma per output pin - so if the device needs 70ma to run we would
need to use at least 2 pins for power. Some devices are very efficient and only require one pin
(some times the Transmit or DTR pin) to be high - in the "SPACE" state while idle.

An RS-232 port can supply only limited power to another device. The number of output lines, the
type of interface driver IC, and the state of the output lines are important considerations.

The types of driver ICs used in serial ports can be divided into three general categories:

Drivers which require plus (+) and minus (-) voltage power supplies such as the 1488 series
of interface integrated circuits. (Most desktop and tower PCs use this type of driver.)
Low power drivers which require one +5 volt power supply. This type of driver has an
internal charge pump for voltage conversion. (Many industrial microprocessor controls use
this type of driver.)
Low voltage (3.3 v) and low power drivers which meet the EIA-562 Standard. (Used on
notebooks and laptops.)

Data is transmitted and received on pins 2 and 3 respectively. Data Set Ready (DSR) is an
indication from the Data Set (i.e., the modem or DSU/CSU) that it is on. Similarly, DTR indicates
to the Data Set that the DTE is on. Data Carrier Detect (DCD) indicates that a good carrier is
being received from the remote modem.

Pins 4 RTS (Request To Send - from the transmitting computer) and 5 CTS (Clear To Send - from
the Data set) are used to control. In most Asynchronous situations, RTS and CTS are constantly
on throughout the communication session. However where the DTE is connected to a multipoint
line, RTS is used to turn carrier on the modem on and off. On a multipoint line, it’s imperative
that only one station is transmitting at a time (because they share the return phone pair). When a
station wants to transmit, it raises RTS. The modem turns on carrier, typically waits a few
milliseconds for carrier to stabilize, and then raises CTS. The DTE transmits when it sees CTS up.
When the station has finished its transmission, it drops RTS and the modem drops CTS and
carrier together.

Clock signals (pins 15, 17, & 24) are only used for synchronous communications. The modem or
DSU extracts the clock from the data stream and provides a steady clock signal to the DTE. Note
that the transmit and receive clock signals do not have to be the same, or even at the same baud
rate.

Note: Transmit and receive leads (2 or 3) can be reversed depending on the use of the equipment -
DCE Data Communications Equipment or a DTE Data Terminal Equipment.

Glossary of Abbreviations etc.

CTS Clear To Send [DCE --> DTE]
DCD Data Carrier Detected (Tone from a modem) [DCE --> DTE]
DCE Data Communications Equipment eg. modem
DSR Data Set Ready [DCE --> DTE]
DSRS Data Signal Rate Selector [DCE --> DTE] (Not commonly
 used)
DTE Data Terminal Equipment eg. computer, printer
DTR Data Terminal Ready [DTE --> DCE]
FG Frame Ground (screen or chassis)
NC No Connection
RCk Receiver (external) Clock input
RI Ring Indicator (ringing tone detected)
RTS Ready To Send [DTE --> DCE]
RxD Received Data [DCE --> DTE]
SG Signal Ground
SCTS Secondary Clear To Send [DCE --> DTE]
SDCD Secondary Data Carrier Detected (Tone from a modem)
 [DCE --> DTE]
SRTS Secondary Ready To Send [DTE --> DCE]
SRxD Secondary Received Data [DCE --> DTE]
STxD Secondary Transmitted Data [DTE --> DTE]
TxD Transmitted Data [DTE --> DTE]

Is Your Interface a DTE or a DCE?

Find out by following these steps: The point of reference for all signals is the terminal (or PC).

1) Measure the DC voltages between (DB25) pins 2 & 7 and between pins 3 & 7. Be
sure the black lead is connected to pin 7 (Signal Ground) and the red lead to whichever
pin you are measuring.

2) If the voltage on pin 2 (TD) is more negative than -3 Volts, then it is a DTE,
otherwise it should be near zero volts.

3) If the voltage on pin 3 (RD) is more negative than -3 Volts, then it is a DCE.

4) If both pins 2 & 3 have a voltage of at least 3 volts, then either you are measuring
incorrectly, or your device is not a standard EIA-232 device. Call technical support.

5) In general, a DTE provides a voltage on TD, RTS, & DTR, whereas a DCE provides
voltage on RD, CTS, DSR, & CD.

PC Com Port - EIA-574
RS-232/V.24 pin out on a DB-9 pin

used for Asynchronous Data

X.21 interface on a DB 15 connector

also see X.21 write up
also see end of page for more info

X.21
General

Voltages:+/- 0.3Vdc

Speeds:
Max. 100Kbps (X.26)

Max. 10Mbps (X.27)

The X.21 interface was recommended by the CCITT in 1976. It is defined as a digital signalling
interface between customers (DTE) equipment and carrier’s equipment (DCE). And thus primarally
used for telecom equipment.

All signals are balanced. Meaning there is always a pair (+/-) for each signal, like used in RS422. The
X.21 signals are the same as RS422, so please refer to RS422 for the exact details.

Pinning according to ISO 4903

Sub-D15 Male Sub-D15 Female

Pin Signal abbr. DTE DCE

1 Shield - -

2 Transmit (A) Out In

3 Control (A) Out In

4 Receive (A) In Out

5 Indication (A) In Out

6 Signal Timing (A) In Out

7 Unassigned

8 Ground - -

9 Transmit (B) Out In

10 Control (B) Out In

11 Receive (B) In Out

12 Indication (B) In Out

13 Signal Timing (B) In Out

14 Unassigned

15 Unassigned

Functional Description
As can be seen from the pinning specifications, the Signal Element Timing (clock) is provided by the
DCE. This means that your provider (local telco office) is responsible for the correct clocking and that
X.21 is a synchronous interface. Hardware handshaking is done by the Control and Indication lines. The
Control is used by the DTE and the Indication is the DCE one.

Cross-cable pinning

X.21 Cross Cable

X.21 X.21

1 1

2 4

3 5

4 2

5 3

6 7

7 6

8 8

9 11

10 12

11 9

12 10

13 14

14 13

15

RS232D uses RJ45 type connectors
(similar to telephone connectors)

Pin No. Signal Description Abbr. DTE DCE

1 DCE Ready, Ring Indicator DSR/RI

2 Received Line Signal DetectorDCD

3 DTE Ready DTR

4 Signal Ground SG

5 Received Data RxD

6 Transmitted Data TxD

7 Clear To Send CTS

8 Request To Send RTS

This is a standard 9 to 25 pin cable layout for async data on a PC AT serial cable

Description Signal 9-pin
DTE

25-pin
DCE Source DTE or DCE

Carrier Detect CD 1 8 from Modem

Receive Data RD 2 3 from Modem

Transmit Data TD 3 2 from Terminal/Computer

Data Terminal
Ready DTR 4 20 from Terminal/Computer

Signal Ground SG 5 7 from Modem

Data Set Ready DSR 6 6 from Modem

Request to Send RTS 7 4 from Terminal/Computer

Clear to Send CTS 8 5 from Modem

Ring Indicator RI 9 22 from Modem

25 pin D-shell connector RS232

commonly used for Async. data

PIN SIGNAL DESCRIPTION

1 PGND Protective Ground
2 TXD Transmit Data
3 RXD Receive Data
4 RTS Ready To Send
5 CTS Clear To Send

6 DSR Data Set Ready
7 SG Signal Ground
8 CD Carrier Detect
20 DTR Data Terminal Ready
22 RI Ring Indicator

 Some applications require more
 than a simple async. configura t

 Pins used for Synchronous data

jump to Other Connector pages

RS232 (25 pin) Tail Circuit Cable

Null Modem cable diagrams

Nullmodem (9p to 9p)
Nullmodem (9p to 25p)
Nullmodem (25p to 25p)

Cross Pinned cables for Async data.

Pin out for local Async Data transfer

Loopback plugs:

Serial Port Loopback (9p)
Serial Port Loopback (25p)

RS-232 Specs.

SPECIFICATIONS RS232 RS423

Mode of Operation SINGLE
-ENDED

SINGLE
-ENDED

Total Number of Drivers and Receivers on One Line 1 DRIVER
1 RECVR

1 DRIVER
10 RECVR

Maximum Cable Length 50 FT. 4000 FT.

Maximum Data Rate 20kb/s 100kb/s

Maximum Driver Output Voltage +/-25V +/-6V

Driver Output Signal Level (Loaded Min.) Loaded +/-5V to +/-15V +/-3.6V

Driver Output Signal Level (Unloaded Max) Unloaded +/-25V +/-6V

Driver Load Impedance (Ohms) 3k to 7k >=450

Max. Driver Current in High Z State Power On N/A N/A

Max. Driver Current in High Z State Power Off +/-6mA @ +/-2v +/-100uA

Slew Rate (Max.) 30V/uS Adjustable

Receiver Input Voltage Range +/-15V +/-12V

Receiver Input Sensitivity +/-3V +/-200mV

Receiver Input Resistance (Ohms) 3k to 7k 4k min.

One byte of async data

Cabling considerations - you should use cabling made for RS-232 data but I have seen low speed
data go over 250’ on 2 pair phone cable. Level 5 cable can also be used but for best distance use a
low capacitance data grade cable.

The standard maxim length is 50’ but if data is async you can increase that distance to as much as
500’ with a good grade of cable.

The RS-232 signal on a single cable is impossible to screen effectively for noise. By screening the
entire cable we can reduce the influence of outside noise, but internally generated noise remains a
problem. As the baud rate and line length increase, the effect of capacitance between the different
lines introduces serious crosstalk (this especially true on synchronous data - because of the clock
lines) until a point is reached where the data itself is unreadable. Signal Crosstalk can be reduced
by using low capacitance cable and shielding each pair

Using a high grade cable (individually shield low capacitance pairs) the distance can be extended
to 4000’

At higher frequencies a new problem comes to light. The high frequency component of the data
signal is lost as the cable gets longer resulting in a rounded, rather than square wave signal.

The maxim distance will depend on the speed and noise level around the cable run.

On longer runs a line driver is needed. This is a simple modem used to increase the maxim
distance you can run RS-232 data.

Making sense of the specifications

Selecting data cable isn’t difficult, but often gets lost in the shuffle of larger system issues. Care
should be taken. however, because intermittent problems caused by marginal cable can be very
difficult to troubleshoot.

Beyond the obvious traits such as number of conductors and wire gauge, cable specifications
include a handful of less intuitive terms.

Characteristic Impedance (Ohms): A value based on the inherent conductance, resistance,
capacitance and inductance of a cable that represents the impedance of an infinitely long cable.
When the cable is out to any length and terminated with this Characteristic Impedance,
measurements of the cable will be identical to values obtained from the infinite length cable. That
is to say that the termination of the cable with this impedance gives the cable the appearance of
being infinite length, allowing no reflections of the transmitted signal. If termination is required in
a system, the termination impedance value should match the Characteristic Impedance of the
cable.

Shunt Capacitance (pF/ft): The amount of equivalent capacitive load of the cable, typically listed
in a per foot basis One of the factors limiting total cable length is the capacitive load. Systems with
long lengths benefits from using low capacitance cable.

Propagation velocity (% of c): The speed at which an electrical signal travels in the cable. The
value given typically must be multiplied by the speed of light (c) to obtain units of meters per
second. For example, a cable that lists a propagation velocity of 78% gives a velocity of 0.78 X 300
X 106 - 234 X 106 meters per second.

Plenum cable

Plenum rated cable is fire resistant and less toxic when burning than non-plenum rated cable.
Check building and fire codes for requirements. Plenum cable is generally more expensive due to
the sheathing material used.

The specification recommends 24AWG twisted pair cable with a shunt capacitance of 16 pF per
foot and 100 ohm characteristic impedance.

It can be difficult to qualify whether shielding is required in a particular system or not, until
problems arise. We recommend erring on the safe side and using shielded cable. Shielded cable is

only slightly more expensive than unshielded.

There are many cables available meeting the recommendations of RS-422 and RS-485, made
specifically for that application. Another choice is the same cable commonly used in the Twisted
pair Ethernet cabling. This cable, commonly referred to as Category 5 cable, is defined by the
ElA/TIA/ANSI 568 specification The extremely high volume of Category 5 cable used makes it
widely available and very inexpensive, often less than half the price of specialty RS422/485
cabling. The cable has a maximum capacitance of 17 pF/ft (14.5 pF typical) and characteristic
impedance of 100 ohms.

Category 5 cable is available as shielded twisted pair (STP) as well as unshielded twisted pair
(UTP) and generally exceeds the recommendations making it an excellent choice for RS232
systems.

RS232 - V.24/V.28 - IS2110 - X.20 bis (for Async)
-

X.21 bis (for Sync)
General

In this document the term RS232 will be used when refered to this serial interface. The description of
RS232 is an EIA/TIA norm and is identical to CCITT V.24/V.28, X.20bis/X.21bis and ISO IS2110. The
only difference is that CCITT has split the interface into its electrical description (V.28) and a
mechanical part (V.24) or Asynchronous (X.20 bis) and Synchronous (X.21 bis) where the EIA/TIA
describes everything under RS232.

As said before RS232 is a serial interface. It can be found in many different applications where the most
common ones are modems and Personal Computers. All pinning specifications are writen for the DTE
side.

All DTE-DCE cables are straight through meaning the pins are connected one on one. DTE-DTE and
DCE-DCE cables are cross cables. To make a destiction between all different types of cables we have to
use a naming convention.
DTE - DCE: Straight Cable
DTE - DTE: Null-Modem Cable
DCE - DCE: Tail Circuit Cable

Interface Mechanical

RS232 can be found on different connectors. There are special specifications for this. The CCITT only
defines a Sub-D 25 pins version where the EIA/TIA has two versions RS232C and RS232D which are
resp. on a Sub-D25 and a RJ45. Next to this IBM has added a Sub-D 9 version which is found an almost

all Personal Computers and is described in TIA 457.

Male Female

Pinning

RS232-CDescription Circuit
EIA

Circuit
CCITT RJ45 TIA 457

1 Shield Ground AA

7 Signal Ground AB 102 4 5

2 Transmitted Data BA 103 6 3

3 Received Data BB 104 5 2

4 Request To Send CA 105 8 7

5 Clear To Send CB 106 7 8

6 DCE Ready CC 107 1 6

20 DTE Ready CD 108.2 3 4

22 Ring Indicator CE 125 1 9

8 Received Line Signal Detector CF 109 2 1

23 Data Signal Rate Select
(DTE/DCE Source> CH/CI 111/112

24 Transmit Signal Element Timing
(DTE Source) DA 113

15 Transmitter Signal Element Timing
(DCE Source) DB 114

17 Receiver Signal Element Timing
(DCE Source) DD 115

18 Local Loopback / Quality Detector LL 141

21 Remote Loopback RL/CG 140/110

14 Secondary Transmitted Data SBA 118

16 Secondary Received Data SBB 119

19 Secondary Request To Send SCA 120

13 Secondary Clear To Send SCB 121

12 Secondary Received Line Signal Detector/
Data signal Rate Select (DCE Source) SCF/CI122/112

25 Test Mode TM 142

9 Reserved for Testing

10 Reserved for Testing

11 Unassigned

Interface Electrical

All signals are measured in reference to a common ground, which is called the signal ground (AB). A
positive voltage between 3 and 15 Vdc represents a logical 0 and a negative voltage between 3 and 15
Vdc represents a logical 1.
This switching between positive and negative is called bipolar. The zero state is not defined in RS232

and is considered a fault condition (this happens when a device is turned off).
According to the above a maximum distance of 50 ft or 15 m. can be reached at a maximum speed of
20k bps. This is according to the official specifications, the distance can be exceeded with the use of
Line Drivers.

Functional description

Description Circuit Function

Shield Ground AA Also known as protective ground. This is the chassis ground
connection between DTE and DCE.

Signal Ground AB The reference ground between a DTE and a DCE. Has the value
0 Vdc.

Transmitted Data BA Data send by the DTE.

Received Data BB Data received by the DTE.

Request To Send CA Originated by the DTE to initiate transmission by the DCE.

Clear To Send CB
Send by the DCE as a reply on the RTS after a delay in ms,
which gives the DCEs enough time to energize their circuits and
synchronize on basic modulation patterns.

DCE Ready CC Known as DSR. Originated by the DCE indicating that it is
basically operating (power on, and in functional mode).

DTE Ready CD
Known as DTR. Originated by the DTE to instruct the DCE to
setup a connection. Actually it means that the DTE is up and
running and ready to communicate.

Ring Indicator CE
A signal from the DCE to the DTE that there is an incomming
call (telephone is ringing). Only used on switched circuit
connections.

Received Line Signal
Detector CF Known as DCD. A signal send from DCE to its DTE to indicate

that it has received a basic carrier signal from a (remote) DCE.

Data Signal Rate Select
(DTE/DCE Source> CH/CI A control signal that can be used to change the transmission

speed.

Transmit Signal Element
Timing
(DTE Source)

DA
Timing signals used by the DTE for transmission, where the
clock is originated by the DTE and the DCE is the slave.

Transmitter Signal Element
Timing
(DCE Source)

DB Timing signals used by the DTE for transmission.

Receiver Signal Element
Timing
(DCE Source)

DD Timing signals used by the DTE when receiving data.

Local Loopback / Quality
Detector LL

Remote Loopback RL/CG Originated by the DCE that changes state when the analog
signal received from the (remote) DCE becomes marginal.

Test Mode TM

Reserved for Testing

The secondary signals are used on some DCE’s. Those units have the possibility to transmit and/or
receive on a secondary channel. Those secondary channels are mostly of a lower speed than the normal
ones and are mainly used for administrative functions.

Cable pinning
Here are some cable pinning that might be useful. Not all applications are covered, it is just a help:

Straight DB25
Cable

DB25 Null- modem cable
(Async)

DB25 Tail- circuit cable
(Sync)

DB25 to DB9 DTE -
DCE cable

Pin Pin

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

Pin Pin

1 1

2 3

3 2

4 5

5 4

6, 8 20

7 7

20 6, 8

</

DB9 Null- modem cable

1,6 4

2 3

3 2

4 1,6

5 5

7 8

8 7

Pin Pin

1 1

2 3

3 2

4 8

6 20

7 7

8 4

17 24

20 6

24 17

jump to related fiber cable pages

 jump to The Belden Cable Company’s cable selection tutorial pages

jump to Data Communication by CAMI Research good write up

jump to RS-232 by CAMI Research good write up

jump to Interfacing the Serial / RS232 Port good write up

(in-depth very technical)

jump to Data Modems for phone lines

jump to Data Modems for fiber optics

jump to Interface converters

ARC Electronics ...
800-926-0226
 Home Page

arc@arcelect.com

PC serial port buffer

Summary of circuit features

Brief description of operation: Buffer to run RS-232 data to longer distanced as normally
Circuit protection: No special protection circuits used
Circuit complexity: Very simple two transistor buffer circuit
Circuit performance: Worked nicely in one special application, doubled the line throughput
Availability of components: Widely available components at the time when the circuit was built
Design testing: Circuit was in constatant use by my friend for over a year
Applications: Maximizing RS-232 line throughput on long cable runs
Power supply: +-12V DC power supply 80 mA
Estimated component cost: Few dollars
Safety considerations: No special safety considerations

Circuit description

This is a simple serial port buffer circuit I designed for a friend to speed up his SLIP connection in
campus computer network "TRINET" of Helsinki University of Technology. The problem in the
network was that the RS232 commections from rooms to terminal server were long and made of bad
quality wiring.

The circuit is a simple buffer which adds more driving capacity to PC serial port for the signal to go
succesfully from PC computer to terminal server (other direction had no problems). The computer is
connected to connector CON1 and the buffered output is available ar CON2. With this circuit the speed
of RS232 connection to termial server could be succesfully raised for 9600 bps to 38400 bps.

The circuit is basically a two transistor buffer consistong of transistors Q1 and Q2 which can drive up to
1A current pulses, but the maximum putput current of the circuit is limited by resistor R2. Value R2 was
experimentally selected by testing resistor values in range of 22 ohm to 270 ohm and value 140 ohm
gave best results (it provides quite good impedance matching to cable used). It is a good idea to use at
least 1W resistor in place of R2 to make sure that it does not overheat in output short circuit situation
(RS232 devices must withstand that to meet the standard).

The circuit was designed to be a compact box which is powered through D25 connector as some
commercial RS232 buffer circuits. The idea is to feed the power to the buffer unit through serial port
voltage test pins 9 and 10. The power was taken from an external power supply (cheap universal wall
transformer) and wired to the D25 connector by modifying the cable connected between computer and
the buffer circuit. The circuit in this configuration takes maximally continuous current of about 100 mA.

Tomi Engdahl <then@delta.hut.fi>

Tuesday
Novembe
4th, 200

Universal Serial Bus Embedded Internet Legacy Ports Device Drivers Miscellaneous

Interfacing the Serial / RS232 Port

The Serial Port is harder to interface than the Parallel Port. In most cases, any device you connect to
the serial port will need the serial transmission converted back to parallel so that it can be used. This
can be done using a UART. On the software side of things, there are many more registers that you
have to attend to than on a Standard Parallel Port. (SPP)

So what are the advantages of using serial data transfer rather than parallel?

1. Serial Cables can be longer than Parallel cables. The serial port transmits a ’1’ as -3 to -25 volts
and a ’0’ as +3 to +25 volts where as a parallel port transmits a ’0’ as 0v and a ’1’ as 5v.
Therefore the serial port can have a maximum swing of 50V compared to the parallel port which
has a maximum swing of 5 Volts. Therefore cable loss is not going to be as much of a problem for
serial cables than they are for parallel.

2. You don’t need as many wires than parallel transmission. If your device needs to be mounted a far
distance away from the computer then 3 core cable (Null Modem Configuration) is going to be a
lot cheaper that running 19 or 25 core cable. However you must take into account the cost of the
interfacing at each end.

3. Infra Red devices have proven quite popular recently. You may of seen many electronic diaries
and palmtop computers which have infra red capabilities build in. However could you imagine
transmitting 8 bits of data at the one time across the room and being able to (from the devices
point of view) decipher which bits are which? Therefore serial transmission is used where one bit
is sent at a time. IrDA-1 (The first infra red specifications) was capable of 115.2k baud and was
interfaced into a UART. The pulse length however was cut down to 3/16th of a RS232 bit length
to conserve power considering these devices are mainly used on diaries, laptops and palmtops.

4. Microcontroller’s have also proven to be quite popular recently. Many of these have in built SCI
(Serial Communications Interfaces) which can be used to talk to the outside world. Serial
Communication reduces the pin count of these MPU’s. Only two pins are commonly used,
Transmit Data (TXD) and Receive Data (RXD) compared with at least 8 pins if you use a 8 bit
Parallel method (You may also require a Strobe).

Table of Contents

Part 1 : Hardware (PC’s)
Hardware Properties

Serial Pinouts (D25 and D9 connectors)
Pin Functions
Null Modems

Loopback Plugs
DTE/DCE Speeds

Flow Control
The UART (8250’s and Compatibles)

Type of UARTS (For PC’s)
Part 2 : Serial Ports’ Registers (PC’s)

Port Addresses and IRQ’s
Table of Registers

DLAB ?
Interrupt Enable Register (IER)

Interrupt Identification Register (IIR)
First In / First Out Control Register (FCR)

Line Control Register (LCR)
Modem Control Register (MCR)

Line Status Register (LSR)
Modem Status Register (MSR)

Scratch Register
Part 3 : Programming (PC’s)

Polling or Interrupt Driven?
Source Code - Termpoll.c (Polling Version)
Source Code - Buff1024.c (ISR Version)

Interrupt Vectors
Interrupt Service Routine

UART Configuration
Main Routine (Loop)

Determining the type of UART via Software
Part 4 : External Hardware - Interfacing Methods

RS-232 Waveforms
RS-232 Level Converters

Making use of the Serial Format
8250 and compatable UART’s

CDP6402, AY-5-1015 / D36402R-9 etc UARTs
Microcontrollers

Part One : Hardware (PC’s)

Hardware Properties

Devices which use serial cables for their communication are split into two categories. These are
DCE (Data Communications Equipment) and DTE (Data Terminal Equipment.) Data
Communications Equipment are devices such as your modem, TA adapter, plotter etc while
Data Terminal Equipment is your Computer or Terminal.

The electrical specifications of the serial port is contained in the EIA (Electronics Industry
Association) RS232C standard. It states many parameters such as -

1. A "Space" (logic 0) will be between +3 and +25 Volts.

2. A "Mark" (Logic 1) will be between -3 and -25 Volts.

3. The region between +3 and -3 volts is undefined.

4. An open circuit voltage should never exceed 25 volts. (In Reference to
GND)

5. A short circuit current should not exceed 500mA. The driver should be
able to handle this without damage. (Take note of this one!)

Above is no where near a complete list of the EIA standard. Line Capacitance, Maximum Baud
Rates etc are also included. For more information please consult the EIA RS232-C standard. It is
interesting to note however, that the RS232C standard specifies a maximum baud rate of 20,000
BPS!, which is rather slow by today’s standards. A new standard, RS-232D has been recently
released.

Serial Ports come in two "sizes", There are the D-Type 25 pin connector and the D-Type 9 pin
connector both of which are male on the back of the PC, thus you will require a female
connector on your device. Below is a table of pin connections for the 9 pin and 25 pin D-Type
connectors.

Serial Pinouts (D25 and D9 Connectors)

D-Type-25 Pin
No. D-Type-9 Pin No. Abbreviation Full Name

Pin 2 Pin 3 TD Transmit Data

Pin 3 Pin 2 RD Receive Data

Pin 4 Pin 7 RTS Request To Send

Pin 5 Pin 8 CTS Clear To Send

Pin 6 Pin 6 DSR Data Set Ready

Pin 7 Pin 5 SG Signal Ground

Pin 8 Pin 1 CD Carrier Detect

Pin 20 Pin 4 DTR Data Terminal
Ready

Pin 22 Pin 9 RI Ring Indicator
Table 1 : D Type 9 Pin and D Type 25 Pin Connectors

Pin Functions

 Abbreviation Full Name Function

 TD Transmit Data Serial Data Output (TXD)

 RD Receive Data Serial Data Input (RXD)

 CTS Clear to Send This line indicates that the Modem is ready to exchange
data.

 DCD Data Carrier Detect When the modem detects a "Carrier" from the modem at
the other end of the phone line, this Line becomes active.

 DSR Data Set Ready This tells the UART that the modem is ready to establish
a link.

 DTR Data Terminal
Ready

This is the opposite to DSR. This tells the Modem that
the UART is ready to link.

 RTS Request To Send This line informs the Modem that the UART is ready to
exchange data.

 RI Ring Indicator Goes active when modem detects a ringing signal from
the PSTN.

Null Modems

A Null Modem is used to connect two DTE’s together. This is commonly used as a cheap way to
network games or to transfer files between computers using Zmodem Protocol, Xmodem
Protocol etc. This can also be used with many Microprocessor Development Systems.

Figure 1 : Null Modem Wiring Diagram

Above is my preferred method of wiring a Null Modem. It only requires 3 wires (TD, RD & SG)
to be wired straight through thus is more cost effective to use with long cable runs. The theory
of operation is reasonably easy. The aim is to make to computer think it is talking to a modem
rather than another computer. Any data transmitted from the first computer must be received by
the second thus TD is connected to RD. The second computer must have the same set-up thus
RD is connected to TD. Signal Ground (SG) must also be connected so both grounds are
common to each computer.

The Data Terminal Ready is looped back to Data Set Ready and Carrier Detect on both
computers. When the Data Terminal Ready is asserted active, then the Data Set Ready and
Carrier Detect immediately become active. At this point the computer thinks the Virtual Modem
to which it is connected is ready and has detected the carrier of the other modem.

All left to worry about now is the Request to Send and Clear To Send. As both computers
communicate together at the same speed, flow control is not needed thus these two lines are also
linked together on each computer. When the computer wishes to send data, it asserts the Request
to Send high and as it’s hooked together with the Clear to Send, It immediately gets a reply that
it is ok to send and does so.

Notice that the ring indicator is not connected to anything of each end. This line is only used to
tell the computer that there is a ringing signal on the phone line. As we don’t have a modem
connected to the phone line this is left disconnected.

LoopBack Plug

Figure 2 : Loopback Plug Wiring Diagram

This loopback plug can come in extremely handy when
writing Serial / RS232 Communications Programs. It has
the receive and transmit lines connected together, so that
anything transmitted out of the Serial Port is immediately
received by the same port. If you connect this to a Serial
Port an load a Terminal Program, anything you type will
be immediately displayed on the screen. This can be used
with the examples later in this tutorial.

Please note that this is not intended for use with
Diagnostic Programs and thus will probably not work.
For these programs you require a differently wired Loop
Back plug which may vary from program to program.

DTE / DCE Speeds

We have already talked briefly about DTE & DCE. A typical Data Terminal Device is a
computer and a typical Data Communications Device is a Modem. Often people will talk about
DTE to DCE or DCE to DCE speeds. DTE to DCE is the speed between your modem and
computer, sometimes referred to as your terminal speed. This should run at faster speeds than
the DCE to DCE speed. DCE to DCE is the link between modems, sometimes called the line
speed.

Most people today will have 28.8K or 33.6K modems. Therefore we should expect the DCE to
DCE speed to be either 28.8K or 33.6K. Considering the high speed of the modem we should
expect the DTE to DCE speed to be about 115,200 BPS.(Maximum Speed of the 16550a UART)
This is where some people often fall into a trap. The communications program which they use
have settings for DCE to DTE speeds. However they see 9.6 KBPS, 14.4 KBPS etc and think it

is your modem speed.

Today’s Modems should have Data Compression build into them. This is very much like
PK-ZIP but the software in your modem compresses and decompresses the data. When set up
correctly you can expect compression ratios of 1:4 or even higher. 1 to 4 compression would be
typical of a text file. If we were transferring that text file at 28.8K (DCE-DCE), then when the
modem compresses it you are actually transferring 115.2 KBPS between computers and thus
have a DCE-DTE speed of 115.2 KBPS. Thus this is why the DCE-DTE should be much higher
than your modem’s connection speed.

Some modem manufacturers quote a maximum compression ratio as 1:8. Lets say for example
its on a new 33.6 KBPS modem then we may get a maximum 268,800 BPS transfer between
modem and UART. If you only have a 16550a which can do 115,200 BPS tops, then you would
be missing out on a extra bit of performance. Buying a 16C650 should fix your problem with a
maximum transfer rate of 230,400 BPS.

However don’t abuse your modem if you don’t get these rates. These are MAXIMUM
compression ratios. In some instances if you try to send a already compressed file, your modem
can spend more time trying the compress it, thus you get a transmission speed less than your
modem’s connection speed. If this occurs try turning off your data compression. This should be
fixed on newer modems. Some files compress easier than others thus any file which compresses
easier is naturally going to have a higher compression ratio.

Flow Control

So if our DTE to DCE speed is several times faster than our DCE to DCE speed the PC can send
data to your modem at 115,200 BPS. Sooner or later data is going to get lost as buffers overflow,
thus flow control is used. Flow control has two basic varieties, Hardware or Software.

Software flow control, sometimes expressed as Xon/Xoff uses two characters Xon and Xoff.
Xon is normally indicated by the ASCII 17 character where as the ASCII 19 character is used
for Xoff. The modem will only have a small buffer so when the computer fills it up the modem
sends a Xoff character to tell the computer to stop sending data. Once the modem has room for
more data it then sends a Xon character and the computer sends more data. This type of flow
control has the advantage that it doesn’t require any more wires as the characters are sent via the
TD/RD lines. However on slow links each character requires 10 bits which can slow
communications down.

Hardware flow control is also known as RTS/CTS flow control. It uses two wires in your serial
cable rather than extra characters transmitted in your data lines. Thus hardware flow control will
not slow down transmission times like Xon-Xoff does. When the computer wishes to send data it
takes active the Request to Send line. If the modem has room for this data, then the modem will
reply by taking active the Clear to Send line and the computer starts sending data. If the modem
does not have the room then it will not send a Clear to Send.

The UART (8250 and Compatibles)

UART stands for Universal Asynchronous Receiver / Transmitter. Its the little box of tricks
found on your serial card which plays the little games with your modem or other connected
devices. Most cards will have the UART’s integrated into other chips which may also control
your parallel port, games port, floppy or hard disk drives and are typically surface mount
devices. The 8250 series, which includes the 16450, 16550, 16650, & 16750 UARTS are the
most commonly found type in your PC. Later we will look at other types which can be used in
your homemade devices and projects.

Figure 3 : Pin Diagrams for 16550, 16450 & 8250 UARTs

The 16550 is chip compatible with the 8250 & 16450. The only two differences are pins 24 &
29. On the 8250 Pin 24 was chip select out which functioned only as a indicator to if the chip
was active or not. Pin 29 was not connected on the 8250/16450 UARTs. The 16550 introduced
two new pins in their place. These are Transmit Ready and Receive Ready which can be
implemented with DMA (Direct Memory Access). These Pins have two different modes of
operation. Mode 0 supports single transfer DMA where as Mode 1 supports Multi-transfer
DMA.

Mode 0 is also called the 16450 mode. This mode is selected when the FIFO buffers are disabled
via Bit 0 of the FIFO Control Register or When the FIFO buffers are enabled but DMA Mode
Select = 0. (Bit 3 of FCR) In this mode RXRDY is active low when at least one character (Byte)
is present in the Receiver Buffer. RXRDY will go inactive high when no more characters are left
in the Receiver Buffer. TXRDY will be active low when there are no characters in the Transmit
Buffer. It will go inactive high after the first character / byte is loaded into the Transmit Buffer.

Mode 1 is when the FIFO buffers are active and the DMA Mode Select = 1. In Mode 1, RXRDY
will go active low when the trigger level is reached or when 16550 Time Out occurs and will
return to inactive state when no more characters are left in the FIFO. TXRDY will be active
when no characters are present in the Transmit Buffer and will go inactive when the FIFO
Transmit Buffer is completely Full.

All the UARTs pins are TTL compatible. That includes TD, RD, RI, DCD, DSR, CTS, DTR and

RTS which all interface into your serial plug, typically a D-type connector. Therefore RS232
Level Converters (which we talk about in detail later) are used. These are commonly the
DS1489 Receiver and the DS1488 as the PC has +12 and -12 volt rails which can be used by
these devices. The RS232 Converters will convert the TTL signal into RS232 Logic Levels.

Pin
No. Name Notes

Pin 1:8 D0:D7 Data Bus

Pin 9 RCLK Receiver Clock Input. The frequency of this input
should equal the receivers baud rate * 16

Pin 10 RD Receive Data

Pin 11 TD Transmit Data

Pin 12 CS0 Chip Select 0 - Active High

Pin 13 CS1 Chip Select 1 - Active High

Pin 14 nCS2 Chip Select 2 - Active Low

Pin 15 nBAUDOUT Baud Output - Output from Programmable Baud Rate
Generator. Frequency = (Baud Rate x 16)

Pin 16 XIN External Crystal Input - Used for Baud Rate
Generator Oscillator

Pin 17 XOUT External Crystal Output

Pin 18 nWR Write Line - Inverted

Pin 19 WR Write Line - Not Inverted

Pin 20 VSS Connected to Common Ground

Pin 21 RD Read Line - Inverted

Pin 22 nRD Read Line - Not Inverted

Pin 23 DDIS
Driver Disable. This pin goes low when CPU is
reading from UART. Can be connected to Bus
Transceiver in case of high capacity data bus.

Pin 24 nTXRDY Transmit Ready

Pin 25 nADS Address Strobe. Used if signals are not stable during
read or write cycle

Pin 26 A2 Address Bit 2

Pin 27 A1 Address Bit 1

Pin 28 A0 Address Bit 0

Pin 29 nRXRDY Receive Ready

Pin 30 INTR Interrupt Output

Pin 31 nOUT2 User Output 2

Pin 32 nRTS Request to Send

Pin 33 nDTR Data Terminal Ready

Pin 34 nOUT1 User Output 1

Pin 35 MR Master Reset

Pin 36 nCTS Clear To Send

Pin 37 nDSR Data Set Ready

Pin 38 nDCD Data Carrier Detect

Pin 39 nRI Ring Indicator

Pin 40 VDD + 5 Volts
Table 2 : Pin Assignments for 16550A UART

The UART requires a Clock to run. If you look at your serial card a common crystal found is
either a 1.8432 MHZ or a 18.432 MHZ Crystal. The crystal in connected to the XIN-XOUT pins
of the UART using a few extra components which help the crystal to start oscillating. This clock
will be used for the Programmable Baud Rate Generator which directly interfaces into the
transmit timing circuits but not directly into the receiver timing circuits. For this an external
connection mast be made from pin 15 (BaudOut) to pin 9 (Receiver clock in.) Note that the
clock signal will be at Baudrate * 16.

If you are serious about pursuing the 16550 UART used in your PC further, then would suggest
downloading a copy of the PC16550D data sheet from National Semiconductors Site. Data
sheets are available in .PDF format so you will need Adobe Acrobat Reader to read these. Texas
Instruments has released the 16750 UART which has 64 Byte FIFO’s. Data Sheets for the
TL16C750 are available from the Texas Instruments Site.

Types of UARTS (For PC’s)

8250 First UART in this series. It contains no scratch register. The 8250A was an
improved version of the 8250 which operates faster on the bus side.

8250A This UART is faster than the 8250 on the bus side. Looks exactly the same to
software than 16450.

8250B Very similar to that of the 8250 UART.

16450 Used in AT’s (Improved bus speed over 8250’s). Operates comfortably at
38.4KBPS. Still quite common today.

16550 This was the first generation of buffered UART. It has a 16 byte buffer,
however it doesn’t work and is replaced with the 16550A.

16550A Is the most common UART use for high speed communications eg 14.4K &
28.8K Modems. They made sure the FIFO buffers worked on this UART.

16650 Very recent breed of UART. Contains a 32 byte FIFO, Programmable X-On /
X-Off characters and supports power management.

16750 Produced by Texas Instruments. Contains a 64 byte FIFO.

Part Two : Serial Port’s Registers (PC’s)

Port Addresses & IRQ’s

Name Address IRQ

COM 1 3F8 4

COM 2 2F8 3

COM 3 3E8 4

COM 4 2E8 3
Table 3 : Standard Port Addresses

Above is the standard port addresses. These should work for most P.C’s. If you just happen to be
lucky enough to own a IBM P/S2 which has a micro-channel bus, then expect a different set of
addresses and IRQ’s. Just like the LPT ports, the base addresses for the COM ports can be read
from the BIOS Data Area.

Start Address Function

0000:0400 COM1’s Base Address

0000:0402 COM2’s Base Address

0000:0404 COM3’s Base Address

0000:0406 COM4’s Base Address
Table 4 - COM Port Addresses in the BIOS Data Area;

The above table shows the address at which we can find the Communications (COM) ports
addresses in the BIOS Data Area. Each address will take up 2 bytes. The following sample
program in C, shows how you can read these locations to obtain the addresses of your
communications ports.

#include
#include

void main(void)
{
 unsigned int far *ptraddr; /* Pointer to location of Port Addresses */
 unsigned int address; /* Address of Port */
 int a;

 ptraddr=(unsigned int far *)0x00000400;

 for (a = 0; a < 4; a++)
 {
 address = *ptraddr;
 if (address == 0)
 printf("No port found for COM%d \n",a+1);
 else
 printf("Address assigned to COM%d is %Xh\n",a+1,address);
 *ptraddr++;

 }
}

Table of Registers

Base AddressDLAB Read/Write Abr. Register Name

+ 0

=0 Write - Transmitter Holding Buffer

=0 Read - Receiver Buffer

=1 Read/Write - Divisor Latch Low Byte

+ 1
=0 Read/Write IER Interrupt Enable Register

=1 Read/Write - Divisor Latch High Byte

+ 2
- Read IIR Interrupt Identification Register

- Write FCR FIFO Control Register

+ 3 - Read/Write LCR Line Control Register

+ 4 - Read/Write MCR Modem Control Register

+ 5 - Read LSR Line Status Register

+ 6 - Read MSR Modem Status Register

+ 7 - Read/Write - Scratch Register
Table 5 : Table of Registers

DLAB ?

You will have noticed in the table of registers that there is a DLAB column. When DLAB is set
to ’0’ or ’1’ some of the registers change. This is how the UART is able to have 12 registers
(including the scratch register) through only 8 port addresses. DLAB stands for Divisor Latch
Access Bit. When DLAB is set to ’1’ via the line control register, two registers become available
from which you can set your speed of communications measured in bits per second.

The UART will have a crystal which should oscillate around 1.8432 MHZ. The UART
incorporates a divide by 16 counter which simply divides the incoming clock signal by 16.
Assuming we had the 1.8432 MHZ clock signal, that would leave us with a maximum, 115,200
hertz signal making the UART capable of transmitting and receiving at 115,200 Bits Per Second
(BPS). That would be fine for some of the faster modems and devices which can handle that
speed, but others just wouldn’t communicate at all. Therefore the UART is fitted with a
Programmable Baud Rate Generator which is controlled by two registers.

Lets say for example we only wanted to communicate at 2400 BPS. We worked out that we
would have to divide 115,200 by 48 to get a workable 2400 Hertz Clock. The "Divisor", in this
case 48, is stored in the two registers controlled by the "Divisor Latch Access Bit". This divisor
can be any number which can be stored in 16 bits (ie 0 to 65535). The UART only has a 8 bit
data bus, thus this is where the two registers are used. The first register (Base + 0) when DLAB
= 1 stores the "Divisor latch low byte" where as the second register (base + 1 when DLAB = 1)

stores the "Divisor latch high byte."

Below is a table of some more common speeds and their divisor latch high bytes & low bytes.
Note that all the divisors are shown in Hexadecimal.

Speed (BPS) Divisor (Dec) Divisor Latch High Byte Divisor Latch Low Byte

50 2304 09h 00h

300 384 01h 80h

600 192 00h C0h

2400 48 00h 30h

4800 24 00h 18h

9600 12 00h 0Ch

19200 6 00h 06h

38400 3 00h 03h

57600 2 00h 02h

115200 1 00h 01h

Table 6 : Table of Commonly Used Baudrate Divisors

Interrupt Enable Register (IER)

Bit Notes

Bit 7 Reserved

Bit 6 Reserved

Bit 5 Enables Low Power Mode (16750)

Bit 4 Enables Sleep Mode (16750)

Bit 3 Enable Modem Status Interrupt

Bit 2 Enable Receiver Line Status Interrupt

Bit 1 Enable Transmitter Holding Register Empty Interrupt

Bit 0 Enable Received Data Available Interrupt
Table 7 : Interrupt Enable Register

The Interrupt Enable Register could possibly be one of the easiest registers on a UART to
understand. Setting Bit 0 high enables the Received Data Available Interrupt which generates an
interrupt when the receiving register/FIFO contains data to be read by the CPU.

Bit 1 enables Transmit Holding Register Empty Interrupt. This interrupts the CPU when the
transmitter buffer is empty. Bit 2 enables the receiver line status interrupt. The UART will
interrupt when the receiver line status changes. Likewise for bit 3 which enables the modem
status interrupt. Bits 4 to 7 are the easy ones. They are simply reserved. (If only everything was
that easy!)

Interrupt Identification Register (IIR)

Bit Notes

Bits 6
and 7

Bit 6 Bit 7

0 0 No FIFO

0 1 FIFO Enabled but Unusable

1 1 FIFO Enabled

Bit 5 64 Byte Fifo Enabled (16750 only)

Bit 4 Reserved

Bit 3 0
Reserved on 8250, 16450

1
16550 Time-out Interrupt
Pending

Bits 1
and 2

Bit 2 Bit 1

0 0 Modem Status Interrupt

0 1 Transmitter Holding Register
Empty Interrupt

1 0 Received Data Available
Interrupt

1 1 Receiver Line Status Interrupt

Bit 0 0
Interrupt Pending

1
No Interrupt Pending

Table 8 : Interrupt Identification Register

The interrupt identification register is a read only register. Bits 6 and 7 give status on the FIFO
Buffer. When both bits are ’0’ no FIFO buffers are active. This should be the only result you
will get from a 8250 or 16450. If bit 7 is active but bit 6 is not active then the UART has it’s
buffers enabled but are unusable. This occurs on the 16550 UART where a bug in the FIFO
buffer made the FIFO’s unusable. If both bits are ’1’ then the FIFO buffers are enabled and fully
operational.

Bits 4 and 5 are reserved. Bit 3 shows the status of the time-out interrupt on a 16550 or higher.

Lets jump to Bit 0 which shows whether an interrupt has occurred. If an interrupt has occurred
it’s status will shown by bits 1 and 2. These interrupts work on a priority status. The Line Status
Interrupt has the highest Priority, followed by the Data Available Interrupt, then the Transmit
Register Empty Interrupt and then the Modem Status Interrupt which has the lowest priority.

First In / First Out Control Register (FCR)

Bit Notes

Bits 6 and
7

Bit 7 Bit 6 Interrupt Trigger Level

0 0 1 Byte

0 1 4 Bytes

1 0 8 Bytes

1 1 14 Bytes

Bit 5 Enable 64 Byte FIFO (16750 only)

Bit 4 Reserved

Bit 3 DMA Mode Select. Change status of RXRDY & TXRDY pins
from mode 1 to mode 2.

Bit 2 Clear Transmit FIFO

Bit 1 Clear Receive FIFO

Bit 0 Enable FIFO’s
Table 9 : FIFO Control Register

The FIFO register is a write only register. This register is used to control the FIFO (First In /
First Out) buffers which are found on 16550’s and higher.

Bit 0 enables the operation of the receive and transmit FIFO’s. Writing a ’0’ to this bit will
disable the operation of transmit and receive FIFO’s, thus you will loose all data stored in these
FIFO buffers.

Bit’s 1 and 2 control the clearing of the transmit or receive FIFO’s. Bit 1 is responsible for the
receive buffer while bit 2 is responsible for the transmit buffer. Setting these bits to 1 will only
clear the contents of the FIFO and will not affect the shift registers. These two bits are self
resetting, thus you don’t need to set the bits to ’0’ when finished.

Bit 3 enables the DMA mode select which is found on 16550 UARTs and higher. More on this
later. Bits 4 and 5 are those easy type again, Reserved.

Bits 6 and 7 are used to set the triggering level on the Receive FIFO. For example if bit 7 was set
to ’1’ and bit 6 was set to ’0’ then the trigger level is set to 8 bytes. When there is 8 bytes of data
in the receive FIFO then the Received Data Available interrupt is set. See (IIR)

Line Control Register (LCR)

Bit 7 1
Divisor Latch Access Bit

0
Access to Receiver buffer,
Transmitter buffer & Interrupt
Enable Register

Bit 6 Set Break Enable

Bits 3, 4 And
5

Bit 5 Bit
4

Bit
3

Parity Select

X X 0 No Parity

0 0 1 Odd Parity

0 1 1 Even Parity

1 0 1 High Parity
(Sticky)

1 1 1 Low Parity
(Sticky)

Bit 2 Length of Stop Bit

0
One Stop Bit

1
2 Stop bits for words of length
6,7 or 8 bits or 1.5 Stop Bits for
Word lengths of 5 bits.

Bits 0 And 1 Bit 1 Bit
0 Word Length

0 0 5 Bits

0 1 6 Bits

1 0 7 Bits

1 1 8 Bits
Table 10 : Line Control Register

The Line Control register sets the basic parameters for communication. Bit 7 is the Divisor
Latch Access Bit or DLAB for short. We have already talked about what it does. (See DLAB?)
Bit 6 Sets break enable. When active, the TD line goes into "Spacing" state which causes a break
in the receiving UART. Setting this bit to ’0’ Disables the Break.

Bits 3,4 and 5 select parity. If you study the 3 bits, you will find that bit 3 controls parity. That
is, if it is set to ’0’ then no parity is used, but if it is set to ’1’ then parity is used. Jumping to bit
5, we can see that it controls sticky parity. Sticky parity is simply when the parity bit is always
transmitted and checked as a ’1’ or ’0’. This has very little success in checking for errors as if
the first 4 bits contain errors but the sticky parity bit contains the appropriately set bit, then a
parity error will not result. Sticky high parity is the use of a ’1’ for the parity bit, while the
opposite, sticky low parity is the use of a ’0’ for the parity bit.

If bit 5 controls sticky parity, then turning this bit off must produce normal parity provided bit 3
is still set to ’1’. Odd parity is when the parity bit is transmitted as a ’1’ or ’0’ so that there is a
odd number of 1’s. Even parity must then be the parity bit produces and even number of 1’s.
This provides better error checking but still is not perfect, thus CRC-32 is often used for
software error correction. If one bit happens to be inverted with even or odd parity set, then a
parity error will occur, however if two bits are flipped in such a way that it produces the correct
parity bit then an parity error will no occur.

Bit 2 sets the length of the stop bits. Setting this bit to ’0’ will produce one stop bit, however
setting it to ’1’ will produce either 1.5 or 2 stop bits depending upon the word length. Note that
the receiver only checks the first stop bit.

Bits 0 and 1 set the word length. This should be pretty straight forward. A word length of 8 bits
is most commonly used today.

Modem Control Register (MCR)

Bit Notes

Bit 7 Reserved

Bit 6 Reserved

Bit 5 Autoflow Control Enabled (16750 only)

Bit 4 LoopBack Mode

Bit 3 Aux Output 2

Bit 2 Aux Output 1

Bit 1 Force Request to Send

Bit 0 Force Data Terminal Ready
Table 11 : Modem Control Register

The Modem Control Register is a Read/Write Register. Bits 5,6 and 7 are reserved. Bit 4
activates the loopback mode. In Loopback mode the transmitter serial output is placed into
marking state. The receiver serial input is disconnected. The transmitter out is looped back to the
receiver in. DSR, CTS, RI & DCD are disconnected. DTR, RTS, OUT1 & OUT2 are connected
to the modem control inputs. The modem control output pins are then place in an inactive state.
In this mode any data which is placed in the transmitter registers for output is received by the
receiver circuitry on the same chip and is available at the receiver buffer. This can be used to test
the UARTs operation.

Aux Output 2 maybe connected to external circuitry which controls the UART-CPU interrupt
process. Aux Output 1 is normally disconnected, but on some cards is used to switch between a
1.8432MHZ crystal to a 4MHZ crystal which is used for MIDI. Bits 0 and 1 simply control their
relevant data lines. For example setting bit 1 to ’1’ makes the request to send line active.

Line Status Register (LSR)

Bit Notes

Bit 7 Error in Received FIFO

Bit 6 Empty Data Holding Registers

Bit 5 Empty Transmitter Holding Register

Bit 4 Break Interrupt

Bit 3 Framing Error

Bit 2 Parity Error

Bit 1 Overrun Error

Bit 0 Data Ready
Table 12 : Line Status Register

The line status register is a read only register. Bit 7 is the error in received FIFO bit. This bit is
high when at least one break, parity or framing error has occurred on a byte which is contained
in the FIFO.

When bit 6 is set, both the transmitter holding register and the shift register are empty. The
UART’s holding register holds the next byte of data to be sent in parallel fashion. The shift
register is used to convert the byte to serial, so that it can be transmitted over one line. When bit
5 is set, only the transmitter holding register is empty. So what’s the difference between the two?
When bit 6, the transmitter holding and shift registers are empty, no serial conversions are taking
place so there should be no activity on the transmit data line. When bit 5 is set, the transmitter
holding register is empty, thus another byte can be sent to the data port, but a serial conversion
using the shift register may be taking place.

The break interrupt (Bit 4) occurs when the received data line is held in a logic state ’0’ (Space)
for more than the time it takes to send a full word. That includes the time for the start bit, data
bits, parity bits and stop bits.

A framing error (Bit 3) occurs when the last bit is not a stop bit. This may occur due to a timing
error. You will most commonly encounter a framing error when using a null modem linking two
computers or a protocol analyzer when the speed at which the data is being sent is different to
that of what you have the UART set to receive it at.

A overrun error normally occurs when your program can’t read from the port fast enough. If you
don’t get an incoming byte out of the register fast enough, and another byte just happens to be
received, then the last byte will be lost and a overrun error will result.

Bit 0 shows data ready, which means that a byte has been received by the UART and is at the
receiver buffer ready to be read.

Modem Status Register (MSR)

Bit Notes

Bit 7 Carrier Detect

Bit 6 Ring Indicator

Bit 5 Data Set Ready

Bit 4 Clear To Send

Bit 3 Delta Data Carrier Detect

Bit 2 Trailing Edge Ring Indicator

Bit 1 Delta Data Set Ready

Bit 0 Delta Clear to Send
Table 13 : Modem Status Register

Bit 0 of the modem status register shows delta clear to send, delta meaning a change in, thus
delta clear to send means that there was a change in the clear to send line, since the last read of
this register. This is the same for bits 1 and 3. Bit 1 shows a change in the Data Set Ready line
where as Bit 3 shows a change in the Data Carrier Detect line. Bit 2 is the Trailing Edge Ring
Indicator which indicates that there was a transformation from low to high state on the Ring
Indicator line.

Bits 4 to 7 show the current state of the data lines when read. Bit 7 shows Carrier Detect, Bit 6
shows Ring Indicator, Bit 5 shows Data Set Ready & Bit 4 shows the status of the Clear To Send
line.

Scratch Register

The scratch register is not used for communications but rather used as a place to leave a byte of
data. The only real use it has is to determine whether the UART is a 8250/8250B or a
8250A/16450 and even that is not very practical today as the 8250/8250B was never designed
for AT’s and can’t hack the bus speed.

Part 3 : Programming (PC’s)
Polling or Interrupt Driven?

Source Code - Termpoll.c (Polling Version)
Source Code - Buff1024.c (ISR Version)

Interrupt Vectors
Interrupt Service Routine

UART Configuration
Main Routine (Loop)

Determining the type of UART via Software
Part 4 : External Hardware - Interfacing Methods

RS-232 Waveforms
RS-232 Level Converters

Making use of the Serial Format

8250 and compatable UART’s
CDP6402, AY-5-1015 / D36402R-9 etc UARTs

Microcontrollers

Copyright 1999-2001 Craig Peacock 19th August 2001.

TIFF Image Creation
Written by Paul Bourke

August 1998

The following demonstrates how to create 24 bit colour RGB TIFF (Tagged Image FIle Format) files.
That is, how to create images from your own software that can be then opened and manipulated with
image handling software, for example: GIMP, PhotoShop, etc. Given this aim, this document illustrates
the "minimal" requirements necessary to create a TIFF file, it does not provide enough information for
writing a TIFF file reader. For more information on the full TIFF specification the following postscript
and pdf files describe the TIFF version 6.

tiff.ps.gz tiff.pdf.gz

The basic structure of a TIFF file is as follows:

The first 8 bytes forms the header. The first two bytes of which is either "II" for little endian byte
ordering or "MM" for big endian byte ordering. In what follows we’ll be assuming little endian ordering.
Note: any true TIFF reading software is supposed to be handle both types. The next two bytes of the
header should be 0 and 42dec (2ahex). The remaining 4 bytes of the header is the offset from the start of

the file to the first "Image File Directory" (IFD), this normally follows the image data it applies to. In the
example below there is only one image and one IFD.

An IFD consists of two bytes indicating the number of entries followed by the entries themselves. The
IFD is terminated with 4 byte offset to the next IFD or 0 if there are none. A TIFF file must contain at
least one IFD!

Each IFD entry consists of 12 bytes. The first two bytes identifies the tag type (as in Tagged Image File
Format). The next two bytes are the field type (byte, ASCII, short int, long int, ...). The next four bytes
indicate the number of values. The last four bytes is either the value itself or an offset to the values.
Considering the first IFD entry from the example gievn below:

 0100 0003 0000 0001 0064 0000
 | | | |
tag --+ | | |
short int -----+ | |
one value ----------+ |
value of 100 -----------------+

Example

The following is an example using the TIFF file shown on the right, namely a black image with a single
white pixel at the top left and the bottom right position. The image is 100 pixels wide by 200 pixels
high.

A hex dump is given below along with matching pointers and locations marked in matching colours,

these colours further match the appropriate parts of the source code gievn later. The tags are underlined.

 4d4d 002a 0000 ea68 ffff ff00 0000 0000
 0000 0000 0000 0000 0000 0000 0000 0000

 black 0’s deleted

 0000 0000 00ff ffff 000e 0100 0003 0000
 0001 0064 0000 0101 0003 0000 0001 00c8
 0000 0102 0003 0000 0003 0000 eb16 0103
 0003 0000 0001 0001 0000 0106 0003 0000
 0001 0002 0000 0111 0004 0000 0001 0000
 0008 0112 0003 0000 0001 0001 0000 0115
 0003 0000 0001 0003 0000 0116 0003 0000
 0001 00c8 0000 0117 0004 0000 0001 0000
 ea60 0118 0003 0000 0003 0000 eb1c 0119
 0003 0000 0003 0000 eb22 011c 0003 0000
 0001 0001 0000 0153 0003 0000 0003 0000
 eb28 0000 0000 0008 0008 0008 0000 0000
 0000 00ff 00ff 00ff 0001 0001 0001

The above example uses 14dec (000eihex) directory entries.

0100 - Image width
0101 - Image height
0102 - Bits per sample (8)
0103 - Compression method (1 = uncompressed)
0106 - Photometric Interpretation (2 = RGB)
0111 - Strip Offsets
0112 - Orientation (1 = 0 top, 0 left hand side) 0115 - Samples per pixel (1)
0116 - Rows per strip (200 = image height)
0117 - Strip Byte Counts (60000 = 100 x 200 x 3)
0118 - Minimum sample value (0,0,0)
0119 - Maximum sample value (255,255,255)
011c - Planar configuration (1 = single image plane)
0153 - Sample format

Source code example

The following is the guts of a C program to create a TIFF file of width nx, height ny. Each pixel is made
up of 3 bytes, one byte for each of Red, Green, Blue. Each colour component ranges from 0 (black) to
255 (white).

 /* Write the header */
 WriteHexString(fptr,"4d4d002a"); /* Little endian & TIFF identifier */
 offset = nx * ny * 3 + 8;
 putc((offset & 0xff000000) / 16777216,fptr);
 putc((offset & 0x00ff0000) / 65536,fptr);
 putc((offset & 0x0000ff00) / 256,fptr);
 putc((offset & 0x000000ff),fptr);

 /* Write the binary data */
 for (j=0;j<ny;j++) {
 for (i=0;i<nx;i++) {
 ... calculate the RGB value between 0 and 255 ...
 fputc(red,fptr);
 fputc(green,fptr);
 fputc(blue,fptr);
 }
 }

 /* Write the footer */
 WriteHexString(fptr,"000e"); /* The number of directory entries (14) */

 /* Width tag, short int */
 WriteHexString(fptr,"0100000300000001");
 fputc((nx & 0xff00) / 256,fptr); /* Image width */
 fputc((nx & 0x00ff),fptr);
 WriteHexString(fptr,"0000");

 /* Height tag, short int */
 WriteHexString(fptr,"0101000300000001");
 fputc((ny & 0xff00) / 256,fptr); /* Image height */
 fputc((ny & 0x00ff),fptr);
 WriteHexString(fptr,"0000");

 /* Bits per sample tag, short int */
 WriteHexString(fptr,"0102000300000003");
 offset = nx * ny * 3 + 182;
 putc((offset & 0xff000000) / 16777216,fptr);
 putc((offset & 0x00ff0000) / 65536,fptr);
 putc((offset & 0x0000ff00) / 256,fptr);
 putc((offset & 0x000000ff),fptr);

 /* Compression flag, short int */
 WriteHexString(fptr,"010300030000000100010000");

 /* Photometric interpolation tag, short int */
 WriteHexString(fptr,"010600030000000100020000");

 /* Strip offset tag, long int */
 WriteHexString(fptr,"011100040000000100000008");

 /* Orientation flag, short int */
 WriteHexString(fptr,"011200030000000100010000");

 /* Sample per pixel tag, short int */
 WriteHexString(fptr,"011500030000000100030000");

 /* Rows per strip tag, short int */
 WriteHexString(fptr,"0116000300000001");
 fputc((ny & 0xff00) / 256,fptr);
 fputc((ny & 0x00ff),fptr);
 WriteHexString(fptr,"0000");

 /* Strip byte count flag, long int */
 WriteHexString(fptr,"0117000400000001");
 offset = nx * ny * 3;
 putc((offset & 0xff000000) / 16777216,fptr);
 putc((offset & 0x00ff0000) / 65536,fptr);
 putc((offset & 0x0000ff00) / 256,fptr);
 putc((offset & 0x000000ff),fptr);

 /* Minimum sample value flag, short int */
 WriteHexString(fptr,"0118000300000003");
 offset = nx * ny * 3 + 188;
 putc((offset & 0xff000000) / 16777216,fptr);
 putc((offset & 0x00ff0000) / 65536,fptr);
 putc((offset & 0x0000ff00) / 256,fptr);
 putc((offset & 0x000000ff),fptr);

 /* Maximum sample value tag, short int */
 WriteHexString(fptr,"0119000300000003");
 offset = nx * ny * 3 + 194;
 putc((offset & 0xff000000) / 16777216,fptr);
 putc((offset & 0x00ff0000) / 65536,fptr);
 putc((offset & 0x0000ff00) / 256,fptr);
 putc((offset & 0x000000ff),fptr);

 /* Planar configuration tag, short int */
 WriteHexString(fptr,"011c00030000000100010000");

 /* Sample format tag, short int */
 WriteHexString(fptr,"0153000300000003");
 offset = nx * ny * 3 + 200;
 putc((offset & 0xff000000) / 16777216,fptr);
 putc((offset & 0x00ff0000) / 65536,fptr);
 putc((offset & 0x0000ff00) / 256,fptr);
 putc((offset & 0x000000ff),fptr);

 /* End of the directory entry */
 WriteHexString(fptr,"00000000");

 /* Bits for each colour channel */
 WriteHexString(fptr,"000800080008");

 /* Minimum value for each component */
 WriteHexString(fptr,"000000000000");

 /* Maximum value per channel */
 WriteHexString(fptr,"00ff00ff00ff");

 /* Samples per pixel for each channel */
 WriteHexString(fptr,"000100010001");

