
Reed-Solomon Error
Correcting Codes

Ohad Rodeh

Reed-Solomon Error Correcting Codes – p.1/22

Introduction
Reed-Solomon codes are used for error correction
The code was invented in 1960 by Irving S. Reed and
Gustave Solomon, at the MIT Lincoln Laboratory
This lecture describes a particular application to
storage
It is based on: A Tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-like systems, James S. Plank,
University of Tennessee, 1996.

Reed-Solomon Error Correcting Codes – p.2/22

Problem definition
n storage devices holding data: D1, . . . , Dn. Each
holds k bytes.
m storage devices holding checksums: C1, . . . , Cm.
Each holds k bytes.
The checksums are computed from the data.
The goal: if any m devices fail, they can be
reconstructed from the surviving devices.

Reed-Solomon Error Correcting Codes – p.3/22

Constructing the
checksums

The value of the checksum devices is
computed using a function F

Reed-Solomon Error Correcting Codes – p.4/22

Words
The RS-RAID scheme breaks the data into
words of size w bits
The coding scheme works on stripes whose
width is w

Reed-Solomon Error Correcting Codes – p.5/22

Simplifying the
problem

From here we focus on a single stripe
The data words are d1, d2, . . . , dn

The checksum words are c1, c2, . . . , cm

ci = F (d1, d2, . . . , dn)

If dj changes to d′

j compute:
c′i = Gi,j(dj , d

′

j , ci)

When data devices fail we re-compute the data from
the available devices and then re-compute the failed
checksum devices from the data devices

Reed-Solomon Error Correcting Codes – p.6/22

Example, RAID-4 as
RS-RAID

Set m = 1

Describe n + 1 parity:
ci = F (d1, d2, . . . , dn) = d1 ⊕ d2 ⊕ · · · ⊕ dn

If device j fails then:
dj = d1 ⊕ . . . dj−1 ⊕ dj+1 · · · ⊕ dn ⊕ c1

Reed-Solomon Error Correcting Codes – p.7/22

Restating the
problem

There are n data words d1, . . . dn all of size w

We will
1. Define functions F and G used to calculate the

parity words c1, .., cm

2. Describe how to recover after losing up to m

devices
Three parts to the solution:
1. Using Vandermonde matrix to compute checksums
2. Using Gaussian elimination to recover from failures
3. Use of Galois fields to perform arithmetic

Reed-Solomon Error Correcting Codes – p.8/22

Vandermonde matrix
Each checksum word ci is a linear combination of the
data words
The matrix contains linearly independent rows

FD = C

Reed-Solomon Error Correcting Codes – p.9/22

Changing a single
word

If data in device j changes from dj to d′

j then
c′i = Gi,j(dj , d

′

j , ci) = ci + fi,j(d
′

j − dj)

This makes changing a single word reasonably efficient

Reed-Solomon Error Correcting Codes – p.10/22

Recovering from
failures

In the matrix below, even after removing m

rows, the matrix remains invertible

Reed-Solomon Error Correcting Codes – p.11/22

Galois fields
We want to use bytes as our data and checksum
elements. Therefore, we need a field with 256
elements.
A field GF (n) is a set of n elements closed under
addition and multiplication
Every element has an inverse for addition and
multiplication

Reed-Solomon Error Correcting Codes – p.12/22

Primes
If n = p is a prime then Zp = {0, . . . , n − 1} is a field
with addition and multiplication module p.
For example, GF (2) = {0, 1} with
addition/multiplication modulo 2.
If n is not a prime then addition/multiplication modulo n

over the set {0, 1, .., n − 1} are not a field
1. For example, if n = 4, and the elements are

{0, 1, 2, 3}

2. Element 2 does not have a multiplicative inverse

Reed-Solomon Error Correcting Codes – p.13/22

GF (2w)

Therefore, we cannot simply use elements
{0, .., 2n − 1} with addition/multiplication module 2n, we
need to use Galois fields
We use the Galois field GF (2w)

The elements of GF (2w) are polynomials with
coefficients that are zero or one.
Arithmetic in GF (2w) is like polynomial arithmetic
module a primitive polynomial of degree w

A primitive polynomial is one that is cannot be factored

Reed-Solomon Error Correcting Codes – p.14/22

GF (4)

GF (4) contains elements: {0, 1, x, x + 1}

The primitive polynomial is q(x) = x2 + x + 1

Arithmetic:
x + (x + 1) = 1

x × x = x2 mod (x2 + x + 1) = x + 1

x × (x + 1) = x2 + x mod (x2 + x + 1) = 1

Reed-Solomon Error Correcting Codes – p.15/22

Efficient arithmetic
It is important to implement arithmetic efficiently over
GF (2w)

Elements in GF (2n) are mapped onto the integers
0, . . . , 2n − 1

Mapping of r(x) onto word of size w

i-th bit is equal to the coefficient of xi in r(x)

Addition is performed with XOR
How do we perform efficient multiplication? Polynomial
multiplication is too slow.

Reed-Solomon Error Correcting Codes – p.16/22

Primitive polynomial
A primitive polynomial q(x) is one that cannot be
factored
If q(x) is primitive then x generates all the elements in
GF (2n)

Reed-Solomon Error Correcting Codes – p.17/22

Multiplication
Multiplication (and division) is done using logarithms
a × b = xlogx(a)+logx(b)

Build two tables
1. gflog[] : maps an integer to its logarithm
2. gfilog[] : maps an integer to its inverse logarithm
In order to multiply two integers, a and b

1. Compute their logarithms
2. Add
3. Compute the inverse logarithm
For division: subtract instead of add

Reed-Solomon Error Correcting Codes – p.18/22

GF (16)

Example tables for GF (16)

Example computations:

Reed-Solomon Error Correcting Codes – p.19/22

GF (16) cont.

Reed-Solomon Error Correcting Codes – p.20/22

Summary
Choose a convenient value for w, w = 8 is a good
choice
Setup the tables gflog and gfilog
Setup the Vandermonde matrix, arithmetic is over
GF (2w)

Use F to maintain the checksums
If any device fails, use F to reconstruct the data

Reed-Solomon Error Correcting Codes – p.21/22

Conclusions
We presented Reed-Solomon error correction codes
Advantages:
1. Conceptually simple
2. Can work with any n and m

Disadvantage: Computationally more expensive than
XOR based codes

Reed-Solomon Error Correcting Codes – p.22/22

2/16/10 5:00 PMReed–Solomon error correction - Wikipedia, the free encyclopedia

Page 1 of 10http://en.wikipedia.org/wiki/Reed–Solomon_error_correction

Reed–Solomon error correction
From Wikipedia, the free encyclopedia

Reed–Solomon error correction is an error-correcting code that works by oversampling a polynomial
constructed from the data. The polynomial is evaluated at several points, and these values are sent or recorded.
Sampling the polynomial more often than is necessary makes the polynomial over-determined. As long as it
receives "many" of the points correctly, the receiver can recover the original polynomial even in the presence
of a "few" bad points.

Reed–Solomon codes are used in a wide variety of commercial applications, most prominently in CDs, DVDs
and Blu-ray Discs, in data transmission technologies such as DSL & WiMAX, in broadcast systems such as
DVB and ATSC, and in computer applications such as RAID 6 systems.

Contents
1 Overview
2 Definition

2.1 Overview
2.2 Mathematical formulation
2.3 Remarks
2.4 Reed–Solomon codes as BCH codes
2.5 Equivalence of the two formulations

3 Properties of Reed–Solomon codes
4 History
5 Applications

5.1 Data storage
5.2 Data transmission
5.3 Mail encoding
5.4 Satellite transmission

6 Sketch of the error correction algorithm
7 See also
8 References
9 External links

Overview
Reed–Solomon codes are block codes. This means that a fixed block of input data is processed into a fixed
block of output data. In the case of the most commonly used R–S code (255, 223) – 223 Reed–Solomon input
symbols (each eight bits long) are encoded into 255 output symbols.

http://en.wikipedia.org/wiki/Error-correcting_code
http://en.wikipedia.org/wiki/Oversampling
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/CD
http://en.wikipedia.org/wiki/DVD
http://en.wikipedia.org/wiki/Blu-ray_Disc
http://en.wikipedia.org/wiki/DSL
http://en.wikipedia.org/wiki/WiMAX
http://en.wikipedia.org/wiki/Digital_Video_Broadcasting
http://en.wikipedia.org/wiki/ATSC_Standards
http://en.wikipedia.org/wiki/RAID_6
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Overview
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Definition
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Overview_2
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Mathematical_formulation
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Remarks
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Reed.E2.80.93Solomon_codes_as_BCH_codes
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Equivalence_of_the_two_formulations
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Properties_of_Reed.E2.80.93Solomon_codes
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#History
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Applications
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Data_storage
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Data_transmission
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Mail_encoding
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Satellite_transmission
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Sketch_of_the_error_correction_algorithm
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#See_also
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#References
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#External_links
http://en.wikipedia.org/wiki/Block_code

2/16/10 5:00 PMReed–Solomon error correction - Wikipedia, the free encyclopedia

Page 2 of 10http://en.wikipedia.org/wiki/Reed–Solomon_error_correction

Most R–S error-correcting code schemes are systematic. This means that some portion of the output
codeword contains the input data in its original form.
A Reed–Solomon symbol size of eight bits forces the longest codeword length to be 255 symbols.
The standard (255, 223) Reed–Solomon code is capable of correcting up to 16 Reed–Solomon symbol
errors in each codeword. Since each symbol is actually eight bits, this means that the code can correct
up to 16 short bursts of error.

The Reed–Solomon code, like the convolutional code, is a transparent code. This means that if the channel
symbols have been inverted somewhere along the line, the decoders will still operate. The result will be the
complement of the original data. However, the Reed–Solomon code loses its transparency when the code is
shortened (see below). The "missing" bits in a shortened code need to be filled by either zeros or ones,
depending on whether the data is complemented or not. (To put it another way, if the symbols are inverted,
then the zero fill needs to be inverted to a ones fill.) For this reason it is mandatory that the sense of the data
(i.e., true or complemented) be resolved before Reed–Solomon decoding.

Definition

Overview

The key idea behind a Reed–Solomon code is that the data encoded is first visualized as a Gegenbauer
polynomial. The code relies on a theorem from algebra that states that any k distinct points uniquely determine

a univariate polynomial of degree, at most, k − 1.

The sender determines a degree k − 1 polynomial, over a finite field, that represents the k data points. The
polynomial is then "encoded" by its evaluation at various points, and these values are what is actually sent.
During transmission, some of these values may become corrupted. Therefore, more than k points are actually
sent. As long as sufficient values are received correctly, the receiver can deduce what the original polynomial
was, and hence decode the original data.

In the same sense that one can correct a curve by interpolating past a gap, a Reed–Solomon code can bridge a
series of errors in a block of data to recover the coefficients of the polynomial that drew the original curve.

Mathematical formulation

Given a finite field F and polynomial ring F[x], let n and k be chosen such that . Pick n
distinct elements of F, denoted . Then, the codebook C is created from the tuplets of

values obtained by evaluating every polynomial (over F) of degree less than k at each xi; that is,

http://en.wikipedia.org/wiki/Convolutional_code
http://en.wikipedia.org/wiki/Gegenbauer_polynomials
http://en.wikipedia.org/wiki/Theorem
http://en.wikipedia.org/wiki/Algebra
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Degree_of_a_polynomial
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Interpolation
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Polynomial_ring

2/16/10 5:00 PMReed–Solomon error correction - Wikipedia, the free encyclopedia

Page 3 of 10http://en.wikipedia.org/wiki/Reed–Solomon_error_correction

C is a [n,k,n − k + 1] code; in other words, it is a linear code of length n (over F) with dimension k and

minimum Hamming distance n − k + 1.

A Reed–Solomon code is a code of the above form, subject to the additional requirement that the set
 must be the set of all non-zero elements of the field F (and therefore, n = | F | − 1).

Remarks

For practical uses of Reed–Solomon codes, it is common to use a finite field F with 2m elements. In this case,

each symbol can be represented as an m-bit value. The sender sends the data points as encoded blocks, and

the number of symbols in the encoded block is n = 2m − 1. Thus a Reed–Solomon code operating on 8-bit

symbols has n = 28 − 1 = 255 symbols per block. (This is a very popular value because of the prevalence

of byte-oriented computer systems.) The number k, with k < n, of data symbols in the block is a design

parameter. A commonly used code encodes k = 223 eight-bit data symbols plus 32 eight-bit parity symbols

in an n = 255-symbol block; this is denoted as a (n,k) = (255,223) code, and is capable of correcting up
to 16 symbol errors per block.

The set {x1,...,xn} of non-zero elements of a finite field can be written as {1,α,α2,...,αn − 1}, where α
is a primitive nth root of unity. It is customary to encode the values of a Reed–Solomon code in this order.
Since αn = 1, and since for every polynomial p(x), the function p(αx) is also a polynomial of the same
degree, it then follows that a Reed–Solomon code is cyclic.

Reed–Solomon codes as BCH codes

Reed–Solomon codes are a special case of a larger class of codes called BCH codes. An efficient error
correction algorithm for BCH codes (and therefore Reed–Solomon codes) was discovered by Berlekamp in
1968.

To see that Reed–Solomon codes are special BCH codes, it is useful to give the following alternate definition
of Reed–Solomon codes.[1]

Given a finite field F of size q, let n = q − 1 and let α be a primitive nth root of unity in F. Also let

 be given. The Reed–Solomon code for these parameters has code word (f0,f1,...,fn − 1) if and

only if α,α2,...,αn − k are roots of the polynomial

p(x) = f0 + f1x + ... + fn − 1xn − 1.

http://en.wikipedia.org/wiki/Linear_code
http://en.wikipedia.org/wiki/Dimension_(vector_space)
http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Byte-oriented
http://en.wikipedia.org/wiki/Primitive_nth_root_of_unity
http://en.wikipedia.org/wiki/Cyclic_code
http://en.wikipedia.org/wiki/BCH_code
http://en.wikipedia.org/wiki/Berlekamp
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#cite_note-0
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Primitive_nth_root_of_unity

2/16/10 5:00 PMReed–Solomon error correction - Wikipedia, the free encyclopedia

Page 4 of 10http://en.wikipedia.org/wiki/Reed–Solomon_error_correction

With this definition, it is immediately seen that a Reed–Solomon code is a polynomial code, and in particular a
BCH code. The generator polynomial g(x) is the minimal polynomial with roots α,α2,...,αn − k, and the

code words are exactly the polynomials that are divisible by g(x).

Equivalence of the two formulations

At first sight, the above two definitions of Reed–Solomon codes seem very different. In the first definition,
code words are values of polynomials, whereas in the second, they are coefficients. Moreover, the polynomials
in the first definition are required to be of small degree, whereas those in the second definition are required to
have specific roots.

The equivalence of the two definitions is proved using the discrete Fourier transform. This transform, which
exists in all finite fields as well as the complex numbers, establishes a duality between the coefficients of
polynomials and their values. This duality can be approximately summarized as follows: Let p(x) and q(x)
be two polynomials of degree less than n. If the values of p(x) are the coefficients of q(x), then (up to a

scalar factor and reordering), the values of q(x) are the coefficients of p(x). For this to make sense, the values

must be taken at locations x = αi, for , where α is a primitive nth root of unity.

To be more precise, let

,

and assume p(x) and q(x) are related by the discrete Fourier transform. Then the coefficients and values of

p(x) and q(x) are related as follows: for all , fi = p(αi) and .

Using these facts, we have: is a code word of the Reed–Solomon code according to the first
definition

if and only if p(x) is of degree less than k (because are the values of p(x)),

if and only if vi = 0 for i = k,...,n − 1,

if and only if q(αi) = 0 for i = 1,...,n − k (because q(αi) = nvn − i),
if and only if is a code word of the Reed–Solomon code according to the second
definition.

This shows that the two definitions are equivalent.

Properties of Reed–Solomon codes

http://en.wikipedia.org/wiki/Polynomial_code
http://en.wikipedia.org/wiki/BCH_code
http://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)
http://en.wikipedia.org/wiki/Primitive_nth_root_of_unity

2/16/10 5:00 PMReed–Solomon error correction - Wikipedia, the free encyclopedia

Page 5 of 10http://en.wikipedia.org/wiki/Reed–Solomon_error_correction

The error-correcting ability of any Reed–Solomon code is determined by n − k, the measure of redundancy in
the block. If the locations of the errored symbols are not known in advance, then a Reed–Solomon code can
correct up to (n − k) / 2 erroneous symbols, i.e., it can correct half as many errors as there are redundant
symbols added to the block. Sometimes error locations are known in advance (e.g., “side information” in
demodulator signal-to-noise ratios)—these are called erasures. A Reed–Solomon code (like any MDS code)
is able to correct twice as many erasures as errors, and any combination of errors and erasures can be
corrected as long as the relation is satisfied, where E is the number of errors and S is the
number of erasures in the block.

The properties of Reed–Solomon codes make them especially well-suited to applications where errors occur in
bursts. This is because it does not matter to the code how many bits in a symbol are in error—if multiple bits
in a symbol are corrupted it only counts as a single error. Conversely, if a data stream is not characterized by
error bursts or drop-outs but by random single bit errors, a Reed–Solomon code is usually a poor choice.

Designers are not required to use the "natural" sizes of Reed–Solomon code blocks. A technique known as
“shortening” can produce a smaller code of any desired size from a larger code. For example, the widely used
(255,223) code can be converted to a (160,128) code by padding the unused portion of the block (usually the
beginning) with 95 binary zeroes and not transmitting them. At the decoder, the same portion of the block is
loaded locally with binary zeroes. The Delsarte-Goethals-Seidel[2] theorem illustrates an example of an
application of shortened Reed–Solomon codes.

In 1999 Madhu Sudan and Venkatesan Guruswami at MIT, published “Improved Decoding of Reed–Solomon
and Algebraic-Geometry Codes” introducing an algorithm that allowed for the correction of errors beyond half
the minimum distance of the code. It applies to Reed–Solomon codes and more generally to algebraic
geometry codes. This algorithm produces a list of codewords (it is a list-decoding algorithm) and is based on
interpolation and factorization of polynomials over GF(2m) and its extensions.

History
The code was invented in 1960 by Irving S. Reed and Gustave Solomon, who were then members of MIT
Lincoln Laboratory. Their seminal article was entitled "Polynomial Codes over Certain Finite Fields." When it
was written, digital technology was not advanced enough to implement the concept. The first application, in
1982, of RS codes in mass-produced products was the compact disc, where two interleaved RS codes are used.
An efficient decoding algorithm for large-distance RS codes was developed by Elwyn Berlekamp and James
Massey in 1969. Today RS codes are used in hard disk drive, DVD, telecommunication, and digital broadcast
protocols.

Applications

Data storage

http://en.wikipedia.org/wiki/Demodulator
http://en.wikipedia.org/wiki/Signal-to-noise_ratio
http://en.wikipedia.org/wiki/Maximum_distance_separable_code
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#cite_note-1
http://en.wikipedia.org/wiki/Madhu_Sudan
http://en.wikipedia.org/wiki/Venkatesan_Guruswami
http://en.wikipedia.org/w/index.php?title=Algebraic_geometry_codes&action=edit&redlink=1
http://en.wikipedia.org/wiki/List-decoding
http://en.wikipedia.org/wiki/Irving_S._Reed
http://en.wikipedia.org/wiki/Gustave_Solomon
http://en.wikipedia.org/wiki/MIT
http://en.wikipedia.org/wiki/Lincoln_Laboratory
http://en.wikipedia.org/wiki/Compact_disc
http://en.wikipedia.org/wiki/Berlekamp-Massey_algorithm
http://en.wikipedia.org/wiki/Elwyn_Berlekamp
http://en.wikipedia.org/wiki/James_Massey
http://en.wikipedia.org/wiki/Hard_disk_drive
http://en.wikipedia.org/wiki/DVD

2/16/10 5:00 PMReed–Solomon error correction - Wikipedia, the free encyclopedia

Page 6 of 10http://en.wikipedia.org/wiki/Reed–Solomon_error_correction

Reed–Solomon coding is very widely used in mass storage systems to correct the burst errors associated with
media defects.

Reed–Solomon coding is a key component of the compact disc. It was the first use of strong error correction
coding in a mass-produced consumer product, and DAT and DVD use similar schemes. In the CD, two layers
of Reed–Solomon coding separated by a 28-way convolutional interleaver yields a scheme called Cross-
Interleaved Reed Solomon Coding (CIRC). The first element of a CIRC decoder is a relatively weak inner
(32,28) Reed–Solomon code, shortened from a (255,251) code with 8-bit symbols. This code can correct up to
2 byte errors per 32-byte block. More importantly, it flags as erasures any uncorrectable blocks, i.e., blocks
with more than 2 byte errors. The decoded 28-byte blocks, with erasure indications, are then spread by the
deinterleaver to different blocks of the (28,24) outer code. Thanks to the deinterleaving, an erased 28-byte
block from the inner code becomes a single erased byte in each of 28 outer code blocks. The outer code easily
corrects this, since it can handle up to 4 such erasures per block.

The result is a CIRC that can completely correct error bursts up to 4000 bits, or about 2.5 mm on the disc
surface. This code is so strong that most CD playback errors are almost certainly caused by tracking errors that
cause the laser to jump track, not by uncorrectable error bursts.[3]

Another product which incorporates Reed–Solomon coding is Nintendo's e-Reader. This is a video-game
delivery system which uses a two-dimensional "barcode" printed on trading cards. The cards are scanned using
a device which attaches to Nintendo's Game Boy Advance game system.

Reed–Solomon error correction is also used in parchive files which are commonly posted accompanying
multimedia files on USENET. The Distributed online storage service Wuala also makes use of Reed–Solomon
when breaking up files.

Data transmission

Specialized forms of Reed–Solomon codes specifically Cauchy-RS and Vandermonde-RS can be used to
overcome the unreliable nature of data transmission over erasure channels. The encoding process assumes a
code of RS(N,K) which results in N codewords of length N symbols each storing K symbols of data, being
generated, that are then sent over an erasure channel.

Any combination of K codewords received at the other end is enough to reconstruct all of the N codewords.
The code rate is generally set to 1/2 unless the channel's erasure likelihood can be adequately modelled and is
seen to be less. In conclusion N is usually 2K, meaning that at least half of all the codewords sent must be
received in order to reconstruct all of the codewords sent.

Reed–Solomon codes are also used in xDSL systems and CCSDS's Space Communications Protocol
Specifications as a form of Forward Error Correction.

Mail encoding

Paper bar codes such as PostBar, MaxiCode, Datamatrix and QR Code use Reed–Solomon error correction to
allow correct reading even if a portion of the bar code is damaged.

http://en.wikipedia.org/wiki/Compact_disc
http://en.wikipedia.org/wiki/Digital_audio_tape
http://en.wikipedia.org/wiki/DVD
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Interleaving
http://en.wikipedia.org/wiki/Cross-interleaved_Reed-Solomon_coding
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#cite_note-2
http://en.wikipedia.org/wiki/Nintendo
http://en.wikipedia.org/wiki/Nintendo_e-Reader
http://en.wikipedia.org/wiki/Video-game
http://en.wikipedia.org/wiki/Barcode
http://en.wikipedia.org/wiki/Game_Boy_Advance
http://en.wikipedia.org/wiki/Parchive
http://en.wikipedia.org/wiki/USENET
http://en.wikipedia.org/wiki/Wuala
http://en.wikipedia.org/wiki/Cauchy_matrix
http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Binary_erasure_channel
http://en.wikipedia.org/wiki/XDSL
http://en.wikipedia.org/wiki/CCSDS
http://en.wikipedia.org/wiki/Space_Communications_Protocol_Specifications
http://en.wikipedia.org/wiki/Forward_Error_Correction
http://en.wikipedia.org/wiki/PostBar
http://en.wikipedia.org/wiki/MaxiCode
http://en.wikipedia.org/wiki/Datamatrix
http://en.wikipedia.org/wiki/QR_Code

2/16/10 5:00 PMReed–Solomon error correction - Wikipedia, the free encyclopedia

Page 7 of 10http://en.wikipedia.org/wiki/Reed–Solomon_error_correction

Satellite transmission

One significant application of Reed–Solomon coding was to encode the digital pictures sent back by the
Voyager space probe.

Voyager introduced Reed–Solomon coding concatenated with convolutional codes, a practice that has since
become very widespread in deep space and satellite (e.g., direct digital broadcasting) communications.

Viterbi decoders tend to produce errors in short bursts. Correcting these burst errors is a job best done by short
or simplified Reed–Solomon codes.

Modern versions of concatenated Reed–Solomon/Viterbi-decoded convolutional coding were and are used on
the Mars Pathfinder, Galileo, Mars Exploration Rover and Cassini missions, where they perform within about
1–1.5 dB of the ultimate limit imposed by the Shannon capacity.

These concatenated codes are now being replaced by more powerful turbo codes where the transmitted data
does not need to be decoded immediately.

Sketch of the error correction algorithm
The following is a sketch of the main idea behind the error correction algorithm for Reed–Solomon codes.

By definition, a code word of a Reed–Solomon code is given by the sequence of values of a low-degree
polynomial over a finite field. A key fact for the error correction algorithm is that the values and the
coefficients of a polynomial are related by the discrete Fourier transform.

The purpose of a Fourier transform is to convert a signal from a time domain to a frequency domain or vice
versa. In case of the Fourier transform over a finite field, the frequency domain signal corresponds to the
coefficients of a polynomial, and the time domain signal correspond to the values of the same polynomial.

As shown in Figures 1 and 2, an isolated value in the frequency domain corresponds to a smooth wave in the
time domain. The wavelength depends on the location of the isolated value.

Conversely, as shown in Figures 3 and 4, an isolated value in the time domain corresponds to a smooth wave
in the frequency domain.

http://en.wikipedia.org/wiki/Voyager_program
http://en.wikipedia.org/wiki/Concatenated_code
http://en.wikipedia.org/wiki/Convolutional_code
http://en.wikipedia.org/wiki/Viterbi_decoder
http://en.wikipedia.org/wiki/Mars_Pathfinder
http://en.wikipedia.org/wiki/Galileo_probe
http://en.wikipedia.org/wiki/Mars_Exploration_Rover
http://en.wikipedia.org/wiki/Cassini_probe
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Shannon_capacity
http://en.wikipedia.org/wiki/Turbo_code
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)
http://en.wikipedia.org/wiki/Time_domain
http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)

2/16/10 5:00 PMReed–Solomon error correction - Wikipedia, the free encyclopedia

Page 8 of 10http://en.wikipedia.org/wiki/Reed–Solomon_error_correction

Figure 1 Figure 2 Figure 3

Figure 4

In a Reed–Solomon code, the frequency domain is divided into two regions as shown in Figure 5: a left (low-
frequency) region of length k, and a right (high-frequency) region of length n − k. A data word is then

embedded into the left region (corresponding to the k coefficients of a polynomial of degree at most k − 1),
while the right region is filled with zeros. The result is Fourier transformed into the time domain, yielding a
code word that is composed only of low frequencies. In the absence of errors, a code word can be decoded by
reverse Fourier transforming it back into the frequency domain.

Now consider a code word containing a single error, as shown in red in Figure 6. The effect of this error in the
frequency domain is a smooth, single-frequency wave in the right region, called the syndrome of the error. The
error location can be determined by determining the frequency of the syndrome signal.

Similarly, if two or more errors are introduced in the code word, the syndrome will be a signal composed of
two or more frequencies, as shown in Figure 7. As long as it is possible to determine the frequencies of which
the syndrome is composed, it is possible to determine the error locations. Notice that the error locations
depend only on the frequencies of these waves, whereas the error magnitudes depend on their amplitudes and
phase.

The problem of determining the error locations has therefore been reduced to the problem of finding, given a
sequence of n − k values, the smallest set of elementary waves into which these values can be decomposed. It
is known from digital signal processing that this problem is equivalent to finding the roots of the minimal
polynomial of the sequence, or equivalently, of finding the shortest linear feedback shift register (LFSR) for

http://en.wikipedia.org/wiki/File:Reed-Solomon1.png
http://en.wikipedia.org/wiki/File:Reed-Solomon2.png
http://en.wikipedia.org/wiki/File:Reed-Solomon3.png
http://en.wikipedia.org/wiki/File:Reed-Solomon4.png
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Recurrence_relation
http://en.wikipedia.org/wiki/Linear_feedback_shift_register

2/16/10 5:00 PMReed–Solomon error correction - Wikipedia, the free encyclopedia

Page 9 of 10http://en.wikipedia.org/wiki/Reed–Solomon_error_correction

Figure 5 Figure 6 Figure 7

polynomial of the sequence, or equivalently, of finding the shortest linear feedback shift register (LFSR) for
the sequence. The latter problem can either be solved inefficiently by solving a system of linear equations, or
more efficiently by the Berlekamp-Massey algorithm.

See also
Forward error correction
BCH code
Low-density parity-check code
Chien search
Datamatrix
Tornado codes
Finite ring

References
1. ^ Lidl, Rudolf; Pilz, Günter (1999). Applied Abstract Algebra (2nd ed.). Wiley. p. 226.
2. ^ "Kissing Numbers, Sphere Packings, and Some Unexpected Proofs", Notices of the American Mathematical

Society, Volume 51, Issue 8, 2004/09. Explains the Delsarte-Goethals-Seidel (http://www.ams.org/notices/200408/fea-
pfender.pdf) theorem as used in the context of the error correcting code for compact disc.

3. ^ K.A.S. Immink, Reed–Solomon Codes and the Compact Disc in S.B. Wicker and V.K. Bhargava, Edrs, Reed–
Solomon Codes and Their Applications, IEEE Press, 1994.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Code, New York: North-
Holland Publishing Company, 1977.
Irving S. Reed and Xuemin Chen, Error-Control Coding for Data Networks", Boston: Kluwer Academic
Publishers, 1999.
MIT OpenCourseWare - Principles of Digital Communication II - Lecture 10 on Reed Solomon Codes
(http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-451Spring-
2005/LectureNotes/detail/embed10.htm)

http://en.wikipedia.org/wiki/File:Reed-Solomon5.png
http://en.wikipedia.org/wiki/File:Reed-Solomon6.png
http://en.wikipedia.org/wiki/File:Reed-Solomon7.png
http://en.wikipedia.org/wiki/Recurrence_relation
http://en.wikipedia.org/wiki/Linear_feedback_shift_register
http://en.wikipedia.org/wiki/Berlekamp-Massey_algorithm
http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/BCH_code
http://en.wikipedia.org/wiki/Low-density_parity-check_code
http://en.wikipedia.org/wiki/Chien_search
http://en.wikipedia.org/wiki/Datamatrix
http://en.wikipedia.org/wiki/Tornado_codes
http://en.wikipedia.org/wiki/Finite_ring
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#cite_ref-0
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#cite_ref-1
http://www.ams.org/notices/200408/fea-pfender.pdf
http://en.wikipedia.org/wiki/Compact_disc
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#cite_ref-2
http://en.wikipedia.org/wiki/Kees_Immink
http://en.wikipedia.org/w/index.php?title=IEEE_Press&action=edit&redlink=1
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-451Spring-2005/LectureNotes/detail/embed10.htm

2/16/10 5:00 PMReed–Solomon error correction - Wikipedia, the free encyclopedia

Page 10 of 10http://en.wikipedia.org/wiki/Reed–Solomon_error_correction

This page was last modified on 29 January 2010 at 06:24.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

External links
Schifra Open Source C++ Reed–Solomon Codec (http://www.schifra.com)
A collection of links to books, online articles and source code
(http://www.radionetworkprocessor.com/reed-solomon.html)
Henry Minsky's RSCode library, Reed–Solomon encoder/decoder (http://rscode.sourceforge.net/)
A Tutorial on Reed–Solomon Coding for Fault-Tolerance in RAID-like Systems
(http://www.cs.utk.edu/%7Eplank/plank/papers/SPE-9-97.html)
A thesis on Algebraic soft-decoding of Reed–Solomon codes
(http://sidewords.files.wordpress.com/2007/12/thesis.pdf) . It explains the basics as well.
Matlab implementation of errors-and-erasures Reed-Solomon decoding
(http://dept.ee.wits.ac.za/~versfeld/research_resources/sourcecode/Errors_And_Erasures_Test.zip)
BBC R&D White Paper WHP031 (http://www.bbc.co.uk/rd/pubs/whp/whp031.shtml)

Retrieved from "http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction"
Categories: Error detection and correction

http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://wikimediafoundation.org/wiki/Terms_of_Use
http://www.wikimediafoundation.org/
http://www.schifra.com/
http://www.radionetworkprocessor.com/reed-solomon.html
http://rscode.sourceforge.net/
http://www.cs.utk.edu/%7Eplank/plank/papers/SPE-9-97.html
http://sidewords.files.wordpress.com/2007/12/thesis.pdf
http://dept.ee.wits.ac.za/~versfeld/research_resources/sourcecode/Errors_And_Erasures_Test.zip
http://www.bbc.co.uk/rd/pubs/whp/whp031.shtml
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction
http://en.wikipedia.org/wiki/Special:Categories
http://en.wikipedia.org/wiki/Category:Error_detection_and_correction

List Decoding of Reed Solomon Codes

Madhu Sudan

MIT CSAIL

List Decoding of Reed Solomon Codes – p. 1/30

Background: Reliable Transmission of
Information

List Decoding of Reed Solomon Codes – p. 2/30

The Problem of Information Transmission

Noisy

Channel
Sender Receiver

List Decoding of Reed Solomon Codes – p. 3/30

The Problem of Information Transmission

We are not

ready

Noisy

Channel
Sender Receiver

List Decoding of Reed Solomon Codes – p. 4/30

The Problem of Information Transmission

We are now

ready

We are not

ready

Noisy

Channel
Sender Receiver

• When information is digital, reliability is critical.

• Need to understand errors, and correct them.

List Decoding of Reed Solomon Codes – p. 5/30

Shannon (1948)

• Model noise by probability distribution.
• Example: Binary symmetric channel (BSC)

◦ Parameter p ∈ [0, 1

2
].

◦ Channel transmits bits.
◦ With probability 1 − p bit transmitted faithfully, and with

probability p bit flipped (independent of all other events).

Shannon’s architecture

• Sender encodes k bits into n bits.
• Transmits n bit string on channel.
• Receiver decodes n bits into k bits.
• Rate of channel usage = k/n.

List Decoding of Reed Solomon Codes – p. 6/30

Shannon’s theorem

• Every channel (in broad class) has a capacity s.t.,
transmitting at Rate below capacity is feasible and above
capacity is infeasible.

• Example: Binary symmetric channel (p) has capacity
1 − H(p), where H(p) is the binary entropy function.
◦ p = 0 implies capacity = 1.
◦ p = 1

2
implies capacity = 0.

◦ p < 1

2
implies capacity > 0.

• Example: q-ary symmetric channel (p): On input σ ∈ Fq

receiver receives (independently) σ′, where
◦ σ′ = σ w.p. 1 − p.
◦ σ′ uniform over Fq − {σ} w.p. p.

Capacity positive if p < 1 − 1/q.

List Decoding of Reed Solomon Codes – p. 7/30

Constructive versions

• Shannon’s theory was non-constructive. Decoding takes
exponential time.

• [Elias ’55] gave polytime algorithms to achieve positive rate
on every channel of positive capacity.

• [Forney ’66] achieved any rate < capacity with polynomial
time algorithms (and exponentially small error).

• Modern results (following [Spielman ’96]) lead to linear time
algorithms.

List Decoding of Reed Solomon Codes – p. 8/30

Hamming (1950)

• Modelled errors adversarially.
• Focussed on image of encoding function (the “Code”).
• Introduced metric (Hamming distance) on range of

encoding function. d(x, y) = # coordinates such that xi 6= yi.
• Noticed that for adversarial error (and guaranteed error

recovery), distance of Code is important.

∆(C) = min
x,y∈C

{d(x, y)}.

• Code of distance d corrects (d − 1)/2 errors.

List Decoding of Reed Solomon Codes – p. 9/30

Contrast between Shannon & Hamming

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
E.g., flips each bit independently w.p. p.

✔ Tightly analyzed for many cases e.g., q-SC(p).
✗ Channel may be too weak to capture some scenarios.
✗ Need very accurate channel model.

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially

✔ Safer model, “good” codes known
✗ Too pessimistic: Can only decode if p < 1/2 for any

alphabet.

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.

• Which model is correct? Depends on application.
◦ Crudely: Small q ⇒ Shannon. Large q ⇒ Hamming.

• Today: New Models of error-correction + algorithms.
◦ List-decoding: Relaxed notion of decoding.

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.

• Which model is correct? Depends on application.
◦ Crudely: Small q ⇒ Shannon. Large q ⇒ Hamming.

• Today: New Models of error-correction + algorithms.
◦ List-decoding: Relaxed notion of decoding.

✔ More errors ✔ Strong (enough) errors.

List Decoding of Reed Solomon Codes – p. 10/30

Reed-Solomon Codes

List Decoding of Reed Solomon Codes – p. 11/30

Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?

List Decoding of Reed Solomon Codes – p. 12/30

Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.

List Decoding of Reed Solomon Codes – p. 12/30

Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.
• Proof:

◦ Project code to first k − 1 coordinates.
◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.

List Decoding of Reed Solomon Codes – p. 12/30

Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.
• Proof:

◦ Project code to first k − 1 coordinates.
◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.
• Surely we can do better?

List Decoding of Reed Solomon Codes – p. 12/30

Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.
• Proof:

◦ Project code to first k − 1 coordinates.
◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.
• Surely we can do better?
• Actually - No! [Reed-Solomon] Codes match this bound!

List Decoding of Reed Solomon Codes – p. 12/30

Reed-Solomon Codes

m1

m2

m3

m4

x1 x2 x3 x4 x5 x6 x7 x8 x9

•Messages ≡ Polynomial.

•Encoding ≡ Evaluation
at x1, . . . , xn.

•n > Degree: Injective

•n ≫ Degree: Redundant

List Decoding of Reed Solomon Codes – p. 13/30

Reed-Solomon Codes (formally)

• Let Fq be a finite field.

• Code specified by k, n, α1, . . . , αn ∈ Fq.

• Message: 〈c0, . . . , ck〉 ∈ F
k+1
q coefficients of degree k

polynomial p(x) = c0 + c1x + · · · ckx
k.

• Encoding: p 7→ 〈p(α1), . . . , p(αn)〉. (k + 1 letters to n letters.)
• Degree k poly has at most k roots ⇔ Distance d = n − k.
• These are the Reed-Solomon codes.

Match [Singleton] bound!
Commonly used (CDs, DVDs etc.).

List Decoding of Reed Solomon Codes – p. 14/30

List-Decoding of Reed-Solomon Codes

List Decoding of Reed Solomon Codes – p. 15/30

Reed-Solomon Decoding

Restatement of the problem:

Input: n points (αi, yi) ∈ F
2
q ; agreement parameter t

Output: All degree k polynomials p(x) s.t. p(αi) = yi for at
least t values of i.

We use k = 1 for illustration.

i.e. want all “lines” (y − ax − b = 0) that pass through
≥ t out of n points.

List Decoding of Reed Solomon Codes – p. 16/30

Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

List Decoding of Reed Solomon Codes – p. 17/30

Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

List Decoding of Reed Solomon Codes – p. 17/30

Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...

List Decoding of Reed Solomon Codes – p. 17/30

Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...

Both relevant lines emerge !

List Decoding of Reed Solomon Codes – p. 17/30

Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...

Both relevant lines emerge !

Formally, Q(x, y) factors as:
(x2 + y2 − 1)(y + x)(y − x).

List Decoding of Reed Solomon Codes – p. 17/30

What Happened?

1. Why did degree 4 curve exist?
◦ Counting argument: degree 4 gives enough degrees of

freedom to pass through any 14 points.

2. Why did all the relevant lines emerge/factor out?
◦ Line ℓ intersects a deg. 4 curve Q in 5 points =⇒ ℓ is a

factor of Q

List Decoding of Reed Solomon Codes – p. 18/30

Generally

Lemma 1: ∃Q with degx(Q),degy(Q) ≤ D =
√

n passing thru any
n points.

Lemma 2: If Q with degx(Q),degy(Q) ≤ D intersects y − p(x) with
deg(p) ≤ d intersect in more that (D + 1)d points, then
y − p(x) divides Q.

List Decoding of Reed Solomon Codes – p. 19/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

• With some fine-tuning of parameters:

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

• With some fine-tuning of parameters:
Theorem: [S. ’96] Can list-decode Reed-Solomon
code from 1 −

√
2R-fraction errors.

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

• With some fine-tuning of parameters:
Theorem: [S. ’96] Can list-decode Reed-Solomon
code from 1 −

√
2R-fraction errors.

• Does not meet combinatorial bounds though!

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

• With some fine-tuning of parameters:
Theorem: [S. ’96] Can list-decode Reed-Solomon
code from 1 −

√
2R-fraction errors.

• Does not meet combinatorial bounds though!

List Decoding of Reed Solomon Codes – p. 20/30

Improved List-Decoding

List Decoding of Reed Solomon Codes – p. 21/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

List Decoding of Reed Solomon Codes – p. 22/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.

List Decoding of Reed Solomon Codes – p. 22/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.

Why?

List Decoding of Reed Solomon Codes – p. 22/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.

Why?

Correct answer has 5 lines.
Degree 4 curve can’t have

5 factors!

List Decoding of Reed Solomon Codes – p. 22/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)
passing through each
point twice.

Q(x, y) = · · ·
(margin too small)
Plot all zeroes ...

List Decoding of Reed Solomon Codes – p. 23/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)
passing through each
point twice.

Q(x, y) = · · ·
(margin too small)
Plot all zeroes ...

All relevant lines emerge!

List Decoding of Reed Solomon Codes – p. 23/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)
passing through each
point twice.

Q(x, y) = · · ·
(margin too small)
Plot all zeroes ...

All relevant lines emerge!

List Decoding of Reed Solomon Codes – p. 23/30

Where was the gain?

• Requiring Q to pass through each point twice, effectively
doubles the # intersections between Q and line.
◦ So # intersections is now 8.

• On the other hand # constraints goes up from 11 to 33.
Forces degree used to go upto 7 (from 4).

• But now # intersections is less than degree!

Can pass through each point twice with less than twice the
degree!

• Letting intersection multiplicity go to ∞ gives decoding
algorithm for upto 1 −

√
R errors.

List Decoding of Reed Solomon Codes – p. 24/30

Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!

List Decoding of Reed Solomon Codes – p. 25/30

Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!

• Matches best known “combinatorial” bounds on
list-decodability.

List Decoding of Reed Solomon Codes – p. 25/30

Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!

• Matches best known “combinatorial” bounds on
list-decodability.

• Open Question: Correct more errors, or show this leads to
exponentially large lists!

List Decoding of Reed Solomon Codes – p. 25/30

Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!

• Matches best known “combinatorial” bounds on
list-decodability.

• Open Question: Correct more errors, or show this leads to
exponentially large lists!

• Techniques: The polynomial method, and the method of
multiplicities!

List Decoding of Reed Solomon Codes – p. 25/30

The Polynomial Method

• Goal: Understand some “combinatorial parameters” of
some algebraically nice set. E.g.,

List Decoding of Reed Solomon Codes – p. 26/30

The Polynomial Method

• Goal: Understand some “combinatorial parameters” of
some algebraically nice set. E.g.,

Minimum number of points in the union of ℓ sets where
each set is t points from a degree k polynomial = ?

Minimum number of points in K ⊆ F
n
q such that K

contains a line in every direction.

List Decoding of Reed Solomon Codes – p. 26/30

The Polynomial Method

• Goal: Understand some “combinatorial parameters” of
some algebraically nice set. E.g.,

• Method:

Fit low-degree polynomial Q to the set K.

Infer Q is zero on points outside K, due to algebraic
niceness.

Infer lower bound on degree of Q (due to abundance of
zeroes).

Transfer to bound on combinatorial parameter of
interest.

List Decoding of Reed Solomon Codes – p. 26/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?

List Decoding of Reed Solomon Codes – p. 27/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤ qn

List Decoding of Reed Solomon Codes – p. 27/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤≈ (q/2)n [Mockenhaupt & Tao]

List Decoding of Reed Solomon Codes – p. 27/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤≈ (q/2)n [Mockenhaupt & Tao]
• In particular, even exponent of q unknown!

List Decoding of Reed Solomon Codes – p. 27/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤≈ (q/2)n [Mockenhaupt & Tao]
• In particular, even exponent of q unknown!
• [Dvir’08]’s breakthrough: ∀K, |K| ≥ qn/n!

List Decoding of Reed Solomon Codes – p. 27/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤≈ (q/2)n [Mockenhaupt & Tao]
• In particular, even exponent of q unknown!
• [Dvir’08]’s breakthrough: ∀K, |K| ≥ qn/n!

• Subsequently [Dvir, Kopparty, Saraf, S.]
∀K, |K| ≥ (q/2)n

List Decoding of Reed Solomon Codes – p. 27/30

Polynomial Method and Kakeya Sets

• [Dvir’08]’s analysis:

Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)

List Decoding of Reed Solomon Codes – p. 28/30

Polynomial Method and Kakeya Sets

• [Dvir’08]’s analysis:

Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)

Show homogenous part of Q zero at y if line in direction
y contained in K.

List Decoding of Reed Solomon Codes – p. 28/30

Polynomial Method and Kakeya Sets

• [Dvir’08]’s analysis:

Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)

Show homogenous part of Q zero at y if line in direction
y contained in K.

Conclude homogenous part is zero too often!

List Decoding of Reed Solomon Codes – p. 28/30

Polynomial Method and Kakeya Sets

• [Dvir’08]’s analysis:

Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)

Show homogenous part of Q zero at y if line in direction
y contained in K.

Conclude homogenous part is zero too often!
• [Saraf + S.], [Dvir + Kopparty + Saraf + S.]:

Fit Q to vanish many times at each point of K.

Yields better bounds!

List Decoding of Reed Solomon Codes – p. 28/30

Conclusions

• Importance of model of error.

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

• Central open question:

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

• Central open question:
Constructive list-decodable binary codes of rate
1 − H(ρ) correcting ρ-fraction errors !!
Corresponding question for large alphabets resolved
by [ParvareshVardy05, GuruswamiRudra06].

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

• Central open question:
Constructive list-decodable binary codes of rate
1 − H(ρ) correcting ρ-fraction errors !!
Corresponding question for large alphabets resolved
by [ParvareshVardy05, GuruswamiRudra06].

• New (?) mathematical insights.

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

• Central open question:
Constructive list-decodable binary codes of rate
1 − H(ρ) correcting ρ-fraction errors !!
Corresponding question for large alphabets resolved
by [ParvareshVardy05, GuruswamiRudra06].

• New (?) mathematical insights.
• Challenge: Apply existing insights to other practical settings.

List Decoding of Reed Solomon Codes – p. 29/30

Thank You !!

List Decoding of Reed Solomon Codes – p. 30/30

Reed-Solomon Codes
by

Bernard Sklar

Introduction
In 1960, Irving Reed and Gus Solomon published a paper in the Journal of the
Society for Industrial and Applied Mathematics [1]. This paper described a new
class of error-correcting codes that are now called Reed-Solomon (R-S) codes.
These codes have great power and utility, and are today found in many
applications from compact disc players to deep-space applications. This article is
an attempt to describe the paramount features of R-S codes and the fundamentals
of how they work.

Reed-Solomon codes are nonbinary cyclic codes with symbols made up of m-bit
sequences, where m is any positive integer having a value greater than 2. R-S (n, k)
codes on m-bit symbols exist for all n and k for which

 0 < k < n < 2m + 2 (1)

where k is the number of data symbols being encoded, and n is the total number of
code symbols in the encoded block. For the most conventional R-S (n, k) code,

 (n, k) = (2m - 1, 2m - 1 - 2t) (2)

where t is the symbol-error correcting capability of the code, and n - k = 2t is the
number of parity symbols. An extended R-S code can be made up with n = 2m or
n = 2m + 1, but not any further.

Reed-Solomon codes achieve the largest possible code minimum distance for any
linear code with the same encoder input and output block lengths. For nonbinary
codes, the distance between two codewords is defined (analogous to Hamming
distance) as the number of symbols in which the sequences differ. For Reed-
Solomon codes, the code minimum distance is given by [2]

 dmin = n - k + 1 (3)

2 Reed-Solomon Codes

The code is capable of correcting any combination of t or fewer errors, where t can
be expressed as [3]

 min 1
2 2
 - n - kdt = =

 (4)

where x means the largest integer not to exceed x. Equation (4) illustrates that
for the case of R-S codes, correcting t symbol errors requires no more than 2t parity
symbols. Equation (4) lends itself to the following intuitive reasoning. One can say
that the decoder has n - k redundant symbols to “spend,” which is twice the amount
of correctable errors. For each error, one redundant symbol is used to locate the error,
and another redundant symbol is used to find its correct value.

The erasure-correcting capability, ρ, of the code is

 ρ = dmin - 1 = n - k (5)

Simultaneous error-correction and erasure-correction capability can be expressed
as follows:

 2α + γ < dmin < n - k (6)

where α is the number of symbol-error patterns that can be corrected and γ is the
number of symbol erasure patterns that can be corrected. An advantage of
nonbinary codes such as a Reed-Solomon code can be seen by the following
comparison. Consider a binary (n, k) = (7, 3) code. The entire n-tuple space
contains 2n = 27 = 128 n-tuples, of which 2k = 23 = 8 (or 1/16 of the n-tuples) are
codewords. Next, consider a nonbinary (n, k) = (7, 3) code where each symbol is
composed of m = 3 bits. The n-tuple space amounts to 2nm = 221 = 2,097,152
n-tuples, of which 2km = 29 = 512 (or 1/4096 of the n-tuples) are codewords. When
dealing with nonbinary symbols, each made up of m bits, only a small fraction (i.e.,
2km of the large number 2nm) of possible n-tuples are codewords. This fraction
decreases with increasing values of m. The important point here is that when a
small fraction of the n-tuple space is used for codewords, a large dmin can be
created.

Any linear code is capable of correcting n - k symbol erasure patterns if the n - k
erased symbols all happen to lie on the parity symbols. However, R-S codes have
the remarkable property that they are able to correct any set of n - k symbol
erasures within the block. R-S codes can be designed to have any redundancy.
However, the complexity of a high-speed implementation increases with

Reed-Solomon Codes 3

redundancy. Thus, the most attractive R-S codes have high code rates (low
redundancy).

Reed-Solomon Error Probability
The Reed-Solomon (R-S) codes are particularly useful for burst-error correction;
that is, they are effective for channels that have memory. Also, they can be used
efficiently on channels where the set of input symbols is large. An interesting
feature of the R-S code is that as many as two information symbols can be added to
an R-S code of length n without reducing its minimum distance. This extended R-S
code has length n + 2 and the same number of parity check symbols as the original
code. The R-S decoded symbol-error probability, PE, in terms of the channel
symbol-error probability, p, can be written as follows [4]:

2 1

1

2 11
2 1

m

E
j t

m

mP j p
j

−

= +

−≈
− ∑ ()2 11

m jjp p − −

− (7)

where t is the symbol-error correcting capability of the code, and the symbols are
made up of m bits each.

The bit-error probability can be upper bounded by the symbol-error probability for
specific modulation types. For MFSK modulation with M = 2m, the relationship
between PB and PE is as follows [3]:

12

2 1
B

E

m

m
P
P

−
=

−
 (8)

Figure 1 shows PB versus the channel symbol-error probability p, plotted from
Equations (7) and (8) for various (t-error-correcting 32-ary orthogonal Reed-
Solomon codes with n = 31 (thirty-one 5-bit symbols per code block).

Figure 2 shows PB versus Eb/N0 for such a coded system using 32-ary MFSK
modulation and noncoherent demodulation over an AWGN channel [4]. For R-S
codes, error probability is an exponentially decreasing function of block length, n,
and decoding complexity is proportional to a small power of the block length [2].
The R-S codes are sometimes used in a concatenated arrangement. In such a
system, an inner convolutional decoder first provides some error control by
operating on soft-decision demodulator outputs; the convolutional decoder then
presents hard-decision data to the outer Reed-Solomon decoder, which further
reduces the probability of error.

4 Reed-Solomon Codes

Figure 1
PB versus p for 32-ary orthogonal signaling and n = 31, t-error correcting Reed-Solomon
coding [4].

Reed-Solomon Codes 5

Figure 2
Bit-error probability versus Eb/N0 performance of several n = 31, t-error correcting Reed-
Solomon coding systems with 32-ary MPSK modulation over an AWGN channel [4].

6 Reed-Solomon Codes

Why R-S Codes Perform Well Against Burst Noise
Consider an (n, k) = (255, 247) R-S code, where each symbol is made up of m = 8
bits (such symbols are typically referred to as bytes). Since n - k = 8, Equation (4)
indicates that this code can correct any four symbol errors in a block of 255.
Imagine the presence of a noise burst, lasting for 25-bit durations and disturbing
one block of data during transmission, as illustrated in Figure 3.

Figure 3
Data block disturbed by 25-bit noise burst.

In this example, notice that a burst of noise that lasts for a duration of 25
contiguous bits must disturb exactly four symbols. The R-S decoder for the
(255, 247) code will correct any four-symbol errors without regard to the type of
damage suffered by the symbol. In other words, when a decoder corrects a byte, it
replaces the incorrect byte with the correct one, whether the error was caused by
one bit being corrupted or all eight bits being corrupted. Thus if a symbol is wrong,
it might as well be wrong in all of its bit positions. This gives an R-S code a
tremendous burst-noise advantage over binary codes, even allowing for the
interleaving of binary codes. In this example, if the 25-bit noise disturbance had
occurred in a random fashion rather than as a contiguous burst, it should be clear
that many more than four symbols would be affected (as many as 25 symbols
might be disturbed). Of course, that would be beyond the capability of the
(255, 247) code.

R-S Performance as a Function of Size, Redundancy, and Code Rate
For a code to successfully combat the effects of noise, the noise duration has to
represent a relatively small percentage of the codeword. To ensure that this
happens most of the time, the received noise should be averaged over a long period
of time, reducing the effect of a freak streak of bad luck. Hence, error-correcting

Reed-Solomon Codes 7

codes become more efficient (error performance improves) as the code block size
increases, making R-S codes an attractive choice whenever long block lengths are
desired [5]. This is seen by the family of curves in Figure 4, where the rate of the
code is held at a constant 7/8, while its block size increases from n = 32 symbols
(with m = 5 bits per symbol) to n = 256 symbols (with m = 8 bits per symbol).
Thus, the block size increases from 160 bits to 2048 bits.

As the redundancy of an R-S code increases (lower code rate), its implementation
grows in complexity (especially for high-speed devices). Also, the bandwidth
expansion must grow for any real-time communications application. However, the
benefit of increased redundancy, just like the benefit of increased symbol size, is
the improvement in bit-error performance, as can be seen in Figure 5, where the
code length n is held at a constant 64, while the number of data symbols decreases
from k = 60 to k = 4 (redundancy increases from 4 symbols to 60 symbols).

Figure 5 represents transfer functions (output bit-error probability versus input
channel symbol-error probability) of hypothetical decoders. Because there is no
system or channel in mind (only an output-versus-input of a decoder), you might
get the idea that the improved error performance versus increased redundancy is a
monotonic function that will continually provide system improvement even as the
code rate approaches zero. However, this is not the case for codes operating in a
real-time communication system. As the rate of a code varies from minimum to
maximum (0 to 1), it is interesting to observe the effects shown in Figure 6. Here,
the performance curves are plotted for BPSK modulation and an R-S (31, k) code
for various channel types. Figure 6 reflects a real-time communication system, where
the price paid for error-correction coding is bandwidth expansion by a factor equal to
the inverse of the code rate. The curves plotted show clear optimum code rates that
minimize the required Eb/N0 [6]. The optimum code rate is about 0.6 to 0.7 for a
Gaussian channel, 0.5 for a Rician-fading channel (with the ratio of direct to reflected
received signal power, K = 7 dB), and 0.3 for a Rayleigh-fading channel. Why is
there an Eb/N0 degradation for very large rates (small redundancy) and very low rates
(large redundancy)? It is easy to explain the degradation at high rates compared to the
optimum rate. Any code generally provides a coding-gain benefit; thus, as the code
rate approaches unity (no coding), the system will suffer worse error performance.
The degradation at low code rates is more subtle because in a real-time
communication system using both modulation and coding, there are two mechanisms
at work. One mechanism works to improve error performance, and the other works to

8 Reed-Solomon Codes

degrade it. The improving mechanism is the coding; the greater the redundancy, the
greater will be the error-correcting capability of the code. The degrading mechanism
is the energy reduction per channel symbol (compared to the data symbol) that stems
from the increased redundancy (and faster signaling in a real-time communication
system). The reduced symbol energy causes the demodulator to make more errors.
Eventually, the second mechanism wins out, and thus at very low code rates the
system experiences error-performance degradation.

Let’s see if we can corroborate the error performance versus code rate in Figure 6
with the curves in Figure 2. The figures are really not directly comparable because
the modulation is BPSK in Figure 6 and 32-ary MFSK in Figure 2. However,
perhaps we can verify that R-S error performance versus code rate exhibits the
same general curvature with MFSK modulation as it does with BPSK. In Figure 2,
the error performance over an AWGN channel improves as the symbol error-
correcting capability, t, increases from t = 1 to t = 4; the t = 1 and t = 4 cases
correspond to R-S (31, 29) and R-S (31, 23) with code rates of 0.94 and 0.74
respectively. However, at t = 8, which corresponds to R-S (31, 15) with code
rate = 0.48, the error performance at PB = 10-5 degrades by about 0.5 dB of Eb/N0
compared to the t = 4 case. From Figure 2, we can conclude that if we were to plot
error performance versus code rate, the curve would have the same general “shape”
as it does in Figure 6. Note that this manifestation cannot be gleaned from Figure 1,
since that figure represents a decoder transfer function, which provides no
information about the channel and the demodulation. Therefore, of the two
mechanisms at work in the channel, the Figure 1 transfer function only presents the
output-versus-input benefits of the decoder, and displays nothing about the loss of
energy as a function of lower code rate.

Reed-Solomon Codes 9

Figure 4
Reed-Solomon rate 7/8 decoder performance as a function of symbol size.

Figure 5
Reed-Solomon (64, k) decoder performance as a function of redundancy.

10 Reed-Solomon Codes

Figure 6
BPSK plus Reed-Solomon (31, k) decoder performance as a function of code rate.

Finite Fields
In order to understand the encoding and decoding principles of nonbinary codes,
such as Reed-Solomon (R-S) codes, it is necessary to venture into the area of finite
fields known as Galois Fields (GF). For any prime number, p, there exists a finite
field denoted GF(p) that contains p elements. It is possible to extend GF(p) to a
field of pm elements, called an extension field of GF(p), and denoted by GF(pm),
where m is a nonzero positive integer. Note that GF(pm) contains as a subset the
elements of GF(p). Symbols from the extension field GF(2m) are used in the
construction of Reed-Solomon (R-S) codes.

The binary field GF(2) is a subfield of the extension field GF(2m), in much the
same way as the real number field is a subfield of the complex number field.

Reed-Solomon Codes 11

Besides the numbers 0 and 1, there are additional unique elements in the extension
field that will be represented with a new symbol α. Each nonzero element in
GF(2m) can be represented by a power of α. An infinite set of elements, F, is
formed by starting with the elements {0, 1, α}, and generating additional elements
by progressively multiplying the last entry by α, which yields the following:

 F = {0, 1, α, α2, …, α j, …} = {0, α0, α1, α2, …, α j, …} (9)

To obtain the finite set of elements of GF(2m) from F, a condition must be imposed
on F so that it may contain only 2m elements and is closed under multiplication.
The condition that closes the set of field elements under multiplication is
characterized by the irreducible polynomial shown below:

 (2 1) 1 0m−α + =

or equivalently

 (2 1) 01m−α = = α (10)

Using this polynomial constraint, any field element that has a power equal to or
greater than 2m - 1 can be reduced to an element with a power less than 2m - 1, as
follows:

 (2) (2 1) 1 1m mn n n+ − + +α = α α = α (11)

Thus, Equation (10) can be used to form the finite sequence F* from the infinite
sequence F as follows:

 ααααααα=

 ααααα=

−

−−∗

...,,,,,...,,,,0

...,,,,...,,,1,0

21022210

212222

m

mmm
F

 (12)

Therefore, it can be seen from Equation (12) that the elements of the finite field,
GF(2m), are as follows:

 { }0 1 2 2 2GF(2) 0, , , , . . . , mm −= α α α α (13)

12 Reed-Solomon Codes

Addition in the Extension Field GF(2m)
Each of the 2m elements of the finite field, GF(2m), can be represented as a distinct
polynomial of degree m - 1 or less. The degree of a polynomial is the value of its
highest-order exponent. We denote each of the nonzero elements of GF(2m) as a
polynomial, ai (X), where at least one of the m coefficients of ai (X) is nonzero.
For i = 0,1,2,…,2m - 2,

 αi = ai (X) = ai, 0 + ai, 1 X + ai, 2 X 2 + … + ai, m - 1 X m - 1 (14)

Consider the case of m = 3, where the finite field is denoted GF(23). Figure 7
shows the mapping (developed later) of the seven elements {αi} and the zero
element, in terms of the basis elements {X 0, X 1, X 2} described by Equation (14).
Since Equation (10) indicates that α0 = α7, there are seven nonzero elements or a
total of eight elements in this field. Each row in the Figure 7 mapping comprises a
sequence of binary values representing the coefficients ai, 0, ai, 1, and ai, 2 in
Equation (14). One of the benefits of using extension field elements {αi} in place
of binary elements is the compact notation that facilitates the mathematical
representation of nonbinary encoding and decoding processes. Addition of two
elements of the finite field is then defined as the modulo-2 sum of each of the
polynomial coefficients of like powers,

 αi + αj = (ai, 0 + aj, 0) + (ai, 1 + aj, 1) X + … + (ai, m - 1 + aj, m - 1) X m - 1 (15)

Figure 7
Mapping field elements in terms of basis elements for GF(8) with f(x) = 1 + x + x3.

Reed-Solomon Codes 13

A Primitive Polynomial Is Used to Define the Finite Field
A class of polynomials called primitive polynomials is of interest because such
functions define the finite fields GF(2m) that in turn are needed to define R-S
codes. The following condition is necessary and sufficient to guarantee that a
polynomial is primitive. An irreducible polynomial f(X) of degree m is said to be
primitive if the smallest positive integer n for which f(X) divides X n + 1 is
n = 2m - 1. Note that the statement A divides B means that A divided into B yields a
nonzero quotient and a zero remainder. Polynomials will usually be shown low
order to high order. Sometimes, it is convenient to follow the reverse format (for
example, when performing polynomial division).

Example 1: Recognizing a Primitive Polynomial

Based on the definition of a primitive polynomial given above, determine whether
the following irreducible polynomials are primitive.

a. 1 + X + X 4

b. 1 + X + X 2 + X 3 + X 4

Solution

a. We can verify whether this degree m = 4 polynomial is primitive by
determining whether it divides X n + 1 = (2 1) 1mX − + = X 15 + 1, but does
not divide X n + 1, for values of n in the range of 1 ≤ n < 15. It is easy to
verify that 1 + X + X 4 divides X 15 + 1 [3], and after repeated
computations it can be verified that 1 + X + X 4 will not divide X n + 1 for
any n in the range of 1 ≤ n < 15. Therefore, 1 + X + X 4 is a primitive
polynomial.

b. It is simple to verify that the polynomial 1 + X + X 2 + X 3 + X 4 divides
X 15 + 1. Testing to see whether it will divide X n + 1 for some n that is
less than 15 yields the fact that it also divides X 5 + 1. Thus, although
1 + X + X 2 + X 3 + X 4 is irreducible, it is not primitive.

The Extension Field GF(23)
Consider an example involving a primitive polynomial and the finite field that it
defines. Table 1 contains a listing of some primitive polynomials. We choose the
first one shown, f(X) = 1 + X + X 3, which defines a finite field GF(2m), where the
degree of the polynomial is m = 3. Thus, there are 2m = 23 = 8 elements in the field
defined by f(X). Solving for the roots of f(X) means that the values of X that

14 Reed-Solomon Codes

correspond to f(X) = 0 must be found. The familiar binary elements, 1 and 0, do
not satisfy (are not roots of) the polynomial f(X) = 1 + X + X 3, since f(1) = 1 and
f(0) = 1 (using modulo-2 arithmetic). Yet, a fundamental theorem of algebra states
that a polynomial of degree m must have precisely m roots. Therefore for this
example, f(X) = 0 must yield three roots. Clearly a dilemma arises, since the three
roots do not lie in the same finite field as the coefficients of f(X). Therefore, they
must lie somewhere else; the roots lie in the extension field, GF(23). Let α, an
element of the extension field, be defined as a root of the polynomial f(X).
Therefore, it is possible to write the following:

 f(α) = 0

 1 + α + α3 = 0 (16)

 α3 = –1 – α

Since in the binary field +1 = −1, α3 can be represented as follows:

 α3 = 1 + α (17)

Thus, α3 is expressed as a weighted sum of α-terms having lower orders. In fact all
powers of α can be so expressed. For example, consider α4, where we obtain

 α4 = α α3 = α (1 + α) = α + α2 (18a)

Now, consider α5, where

 α5 = α α4 = α (α + α2) = α2 + α3 (18b)

From Equation (17), we obtain

 α5 = 1 + α + α2 (18c)

Now, for α6, using Equation (18c), we obtain

 α6 = α α5 = α (1 + α + α2) = α + α2 + α3 = 1 + α2 (18d)

And for α7, using Equation (18d), we obtain

 α7 = α α6 = α (1 + α2) = α + α3 = 1 = α0 (18e)

Note that α7 = α0, and therefore the eight finite field elements of GF(23) are

 {0, α0, α1, α2, α3, α4, α5, α6} (19)

Reed-Solomon Codes 15

Table 1
Some Primitive Polynomials

m m
3 1 + X + X 3 14 1 + X + X 6 + X 10 + X 14
4 1 + X + X 4 15 1 + X + X 15
5 1 + X 2 + X 5 16 1 + X + X 3 + X 12 + X 16
6 1 + X + X 6 17 1 + X 3 + X 17
7 1 + X 3 + X 7 18 1 + X 7 + X 18
8 1 + X 2 + X 3 + X 4 + X 8 19 1 + X + X 2 + X 5 + X 19
9 1 + X 4 + X 9 20 1 + X 3 + X 20
10 1 + X 3 + X 10 21 1 + X 2 + X 21
11 1 + X 2 + X 11 22 1 + X + X 22
12 1 + X + X 4 + X 6 + X 12 23 1 + X 5 + X 23
13 1 + X + X 3 + X 4 + X 13 24 1 + X + X 2 + X 7 + X 24

The mapping of field elements in terms of basis elements, described by Equation
(14), can be demonstrated with the linear feedback shift register (LFSR) circuit
shown in Figure 8. The circuit generates (with m = 3) the 2m - 1 nonzero elements
of the field, and thus summarizes the findings of Figure 7 and Equations (17)
through (19). Note that in Figure 8 the circuit feedback connections correspond to
the coefficients of the polynomial f(X) = 1 + X + X 3, just like for binary cyclic
codes [3]. By starting the circuit in any nonzero state, say 1 0 0, and performing a
right-shift at each clock time, it is possible to verify that each of the field elements
shown in Figure 7 (except the all-zeros element) will cyclically appear in the stages
of the shift register. Two arithmetic operations, addition and multiplication, can be
defined for this GF(23) finite field. Addition is shown in Table 2, and
multiplication is shown in Table 3 for the nonzero elements only. The rules of
addition follow from Equations (17) through (18e), and can be verified by noticing
in Figure 7 that the sum of any field elements can be obtained by adding (modulo-
2) the respective coefficients of their basis elements. The multiplication rules in
Table 3 follow the usual procedure, in which the product of the field elements is
obtained by adding their exponents modulo-(2m - 1), or for this case, modulo-7.

16 Reed-Solomon Codes

Figure 8
Extension field elements can be represented by the contents of a binary linear feedback shift
register (LFSR) formed from a primitive polynomial.

 Table 2 Table 3
 Addition Table Multiplication Table

 α0 α1 α2 α3 α4 α5 α6 α0 α1 α2 α3 α4 α5 α6
α0 0 α3 α6 α1 α5 α4 α2 α0 α0 α1 α2 α3 α4 α5 α6
α1 α3 0 α4 α0 α2 α6 α5 α1 α1 α2 α3 α4 α5 α6 α0
α2 α6 α4 0 α5 α1 α3 α0 α2 α2 α3 α4 α5 α6 α0 α1
α3 α1 α0 α5 0 α6 α2 α4 α3 α3 α4 α5 α6 α0 α1 α2
α4 α5 α2 α1 α6 0 α0 α3 α4 α4 α5 α6 α0 α1 α2 α3
α5 α4 α6 α3 α2 α0 0 α1 α5 α5 α6 α0 α1 α2 α3 α4
α6 α2 α5 α0 α4 α3 α1 0 α6 α6 α0 α1 α2 α3 α4 α5

A Simple Test to Determine Whether a Polynomial Is Primitive
There is another way of defining a primitive polynomial that makes its verification
relatively easy. For an irreducible polynomial to be a primitive polynomial, at least
one of its roots must be a primitive element. A primitive element is one that when
raised to higher-order exponents will yield all the nonzero elements in the field.
Since the field is a finite field, the number of such elements is finite.

Example 2: A Primitive Polynomial Must Have at Least One Primitive Element

Find the m = 3 roots of f(X) = 1 + X + X 3, and verify that the polynomial is
primitive by checking that at least one of the roots is a primitive element. What are
the roots? Which ones are primitive?

Reed-Solomon Codes 17

Solution

The roots will be found by enumeration. Clearly, α0 = 1 is not a root because
f(α0) = 1. Now, use Table 2 to check whether α1 is a root. Since

 f(α) = 1 + α + α3 = 1 + α0 = 0

α is therefore a root.

Now check whether α2 is a root:

 f(α2) = 1 + α2 + α6 = 1 + α0 = 0

Hence, α2 is a root.

Now check whether α3 is a root.

 f(α3) = 1 + α3 + α9 = 1 + α3 + α2 = 1 + α5 = α4 ≠ 0

Hence, α3 is not a root. Is α4 a root?

 f(α4) = α12 + α4 + 1 = α5 + α4 + 1 = 1 + α0 = 0

Yes, it is a root. Hence, the roots of f(X) = 1 + X + X 3 are α, α2, and α4. It is not
difficult to verify that starting with any of these roots and generating higher-order
exponents yields all of the seven nonzero elements in the field. Hence, each of the
roots is a primitive element. Since our verification requires that at least one root be
a primitive element, the polynomial is primitive.

A relatively simple method to verify whether a polynomial is primitive can be
described in a manner that is related to this example. For any given polynomial
under test, draw the LFSR, with the feedback connections corresponding to the
polynomial coefficients as shown by the example of Figure 8. Load into the
circuit-registers any nonzero setting, and perform a right-shift with each clock
pulse. If the circuit generates each of the nonzero field elements within one period,
the polynomial that defines this GF(2m) field is a primitive polynomial.

18 Reed-Solomon Codes

Reed-Solomon Encoding
Equation (2), repeated below as Equation (20), expresses the most conventional
form of Reed-Solomon (R-S) codes in terms of the parameters n, k, t, and any
positive integer m > 2.

 (n, k) = (2m - 1, 2m - 1 - 2t) (20)

where n - k = 2t is the number of parity symbols, and t is the symbol-error
correcting capability of the code. The generating polynomial for an R-S code takes
the following form:

 g(X) = g0 + g1 X + g2 X 2 + … + g2t - 1 X 2t - 1 + X 2t (21)

The degree of the generator polynomial is equal to the number of parity symbols.
R-S codes are a subset of the Bose, Chaudhuri, and Hocquenghem (BCH) codes;
hence, it should be no surprise that this relationship between the degree of the
generator polynomial and the number of parity symbols holds, just as for BCH
codes. Since the generator polynomial is of degree 2t, there must be precisely 2t
successive powers of α that are roots of the polynomial. We designate the roots of
g(X) as α, α2, …, α2t. It is not necessary to start with the root α; starting with any
power of α is possible. Consider as an example the (7, 3) double-symbol-error
correcting R-S code. We describe the generator polynomial in terms of its
2t = n - k = 4 roots, as follows:

() () () ()
() ()

() ()
() () ()

2 3 4

2 2 3 2 3 4 7

2 4 3 2 6 0

4 4 6 3 3 10 0 2 4 9 3

4 3 3 0 2 1 3

()X X X X X

X X X X

X X X X

X X X X

X X X X

= − α − α − α − α

= − α+ α +α − α + α + α

= − α + α − α + α

= − α + α + α + α + α − α + α + α

= − α + α − α + α

g

Following the low order to high order format, and changing negative signs to
positive, since in the binary field +1 = –1, g(X) can be expressed as follows:

 g(X) = α3 + α1 X + α0 X 2 + α3 X 3 + X 4 (22)

Reed-Solomon Codes 19

Encoding in Systematic Form
Since R-S codes are cyclic codes, encoding in systematic form is analogous to the
binary encoding procedure [3]. We can think of shifting a message polynomial,
m(X), into the rightmost k stages of a codeword register and then appending a
parity polynomial, p(X), by placing it in the leftmost n - k stages. Therefore we
multiply m(X) by X n - k, thereby manipulating the message polynomial
algebraically so that it is right-shifted n - k positions. Next, we divide X n - k m(X)
by the generator polynomial g(X), which is written in the following form:

 X n - k m(X) = q(X) g(X) + p(X) (23)

where q(X) and p(X) are quotient and remainder polynomials, respectively. As in
the binary case, the remainder is the parity. Equation (23) can also be expressed as
follows:

 p(X) = X n - k m(X) modulo g(X) (24)

The resulting codeword polynomial, U(X) can be written as

 U(X) = p(X) + X n - k m(X) (25)

We demonstrate the steps implied by Equations (24) and (25) by encoding the
following three-symbol message:

 {{ {
51 3 αα α

010 110 111

with the (7, 3) R-S code whose generator polynomial is given in Equation (22). We
first multiply (upshift) the message polynomial α1 + α3 X + α5 X 2 by X n - k = X 4,
yielding α1 X 4 + α3 X 5 + α5 X 6. We next divide this upshifted message polynomial
by the generator polynomial in Equation (22), α3 + α1 X + α0 X 2 + α3 X 3 + X 4.
Polynomial division with nonbinary coefficients is more tedious than its binary
counterpart, because the required operations of addition (subtraction) and
multiplication (division) must follow the rules in Tables 2 and 3, respectively. It is
left as an exercise for the reader to verify that this polynomial division results in
the following remainder (parity) polynomial.

 p(X) = α0 + α2 X + α4 X 2 + α6 X 3

Then, from Equation (25), the codeword polynomial can be written as follows:

 U(X) = α0 + α2 X + α4 X 2 + α6 X 3+ α1 X 4 + α3 X 5 + α5 X 6

20 Reed-Solomon Codes

Systematic Encoding with an (n - k)–Stage Shift Register
Using circuitry to encode a three-symbol sequence in systematic form with the
(7, 3) R-S code described by g(X) in Equation (22) requires the implementation of
a linear feedback shift register (LFSR) circuit, as shown in Figure 9. It can easily
be verified that the multiplier terms in Figure 9, taken from left to right, correspond
to the coefficients of the polynomial in Equation (22) (low order to high order).
This encoding process is the nonbinary equivalent of cyclic encoding [3]. Here,
corresponding to Equation (20), the (7, 3) R-S nonzero codewords are made up of
2m - 1 = 7 symbols, and each symbol is made up of m = 3 bits.

Figure 9
LFSR encoder for a (7, 3) R-S code.

Here the example is nonbinary, so that each stage in the shift register of Figure 9
holds a 3-bit symbol. In the case of binary codes, the coefficients labeled g1, g2,
and so on are binary. Therefore, they take on values of 1 or 0, simply dictating the
presence or absence of a connection in the LFSR. However in Figure 9, since each
coefficient is specified by 3-bits, it can take on one of eight values.

The nonbinary operation implemented by the encoder of Figure 9, forming
codewords in a systematic format, proceeds in the same way as the binary one. The
steps can be described as follows:

1. Switch 1 is closed during the first k clock cycles to allow shifting the
message symbols into the (n - k)–stage shift register.

2. Switch 2 is in the down position during the first k clock cycles in order to
allow simultaneous transfer of the message symbols directly to an output
register (not shown in Figure 9).

Reed-Solomon Codes 21

3. After transfer of the kth message symbol to the output register, switch 1 is
opened and switch 2 is moved to the up position.

4. The remaining (n - k) clock cycles clear the parity symbols contained in
the shift register by moving them to the output register.

5. The total number of clock cycles is equal to n, and the contents of the
output register is the codeword polynomial p(X) + X n - k m(X), where
p(X) represents the parity symbols and m(X) the message symbols in
polynomial form.

We use the same symbol sequence that was chosen as a test message earlier:

 {{ {
51 3 αα α

010 110 111

where the rightmost symbol is the earliest symbol, and the rightmost bit is the
earliest bit. The operational steps during the first k = 3 shifts of the encoding circuit
of Figure 9 are as follows:

INPUT QUEUE CLOCK
 CYCLE

REGISTER CONTENTS FEEDBACK

α1 α3 α5 0 0 0 0 0 α5

α1 α3 1 α1 α6 α5 α1 α0

α1 2 α3 0 α2 α2 α4

- α0 α2 α4 α6 - 3

After the third clock cycle, the register contents are the four parity symbols, α0, α2,
α4, and α6, as shown. Then, switch 1 of the circuit is opened, switch 2 is toggled to
the up position, and the parity symbols contained in the register are shifted to the
output. Therefore the output codeword, U(X), written in polynomial form, can be
expressed as follows:

6

0
() n

n
n

X u X
=

= ∑U

() () () () () () ()

0 2 4 2 6 3 1 4 3 5 5 6

2 3 4 5 6

()

100 001 011 101 010 110 111

X X X X X X X

X X X X X X

= α + α + α + α + α + α + α

= + + + + + +

U
 (26)

22 Reed-Solomon Codes

The process of verifying the contents of the register at various clock cycles is
somewhat more tedious than in the binary case. Here, the field elements must be
added and multiplied by using Table 2 and Table 3, respectively.

The roots of a generator polynomial, g(X), must also be the roots of the codeword
generated by g(X), because a valid codeword is of the following form:

 U(X) = m(X) g(X) (27)

Therefore, an arbitrary codeword, when evaluated at any root of g(X), must yield
zero. It is of interest to verify that the codeword polynomial in Equation (26) does
indeed yield zero when evaluated at the four roots of g(X). In other words, this
means checking that

 U(α) = U(α2) = U(α3) = U(α4) = 0

Evaluating each term independently yields the following:

0 3 6 9 5 8 11

0 3 6 2 5 1 4

1 0 6 4

3 3

(α) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α + α + α + α
= α + α = 0

U

(2 0 4 8 12 9 13 17

0 4 1 5 2 6 3

5 6 0 3

1 1

α) = α + α + α + α + α + α + α
= α + α + α + α +α + α + α
= α + α + α + α
= α + α =

U

0

(3 0 5 10 15 13 18 23

0 5 3 1 6 4 2

4 0 3 2

5 5

α) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α + α + α + α
= α + α =

U

0

(4 0 6 12 18 17 23 29

0 6 5 4 3 2 1

2 0 5 1

6 6

α) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α + α + α + α
= α + α =

U

0

This demonstrates the expected results that a codeword evaluated at any root of
g(X) must yield zero.

Reed-Solomon Codes 23

Reed-Solomon Decoding
Earlier, a test message encoded in systematic form using a (7, 3) R-S code resulted
in a codeword polynomial described by Equation (26). Now, assume that during
transmission this codeword becomes corrupted so that two symbols are received in
error. (This number of errors corresponds to the maximum error-correcting
capability of the code.) For this seven-symbol codeword example, the error pattern,
e(X), can be described in polynomial form as follows:

6

0
() n

n
n

X e X
=

= ∑e (28)

For this example, let the double-symbol error be such that

() () () () () () ()

2 2 3 5 4 5 6

2 3 4 5 6

() 0 0 0 0 0

000 000 000 001 111 000 000

X X X X X X X

X X X X X X

= + + + α + α + +

= + + + + + +

e
 (29)

In other words, one parity symbol has been corrupted with a 1-bit error (seen as
α2), and one data symbol has been corrupted with a 3-bit error (seen as α5). The
received corrupted-codeword polynomial, r(X), is then represented by the sum of
the transmitted-codeword polynomial and the error-pattern polynomial as follows:

 () () ()X X X= +r U e (30)

Following Equation (30), we add U(X) from Equation (26) to e(X) from Equation
(29) to yield r(X), as follows:

() () () () () () ()2 3 4 5 6() 100 001 011 100 101 110 111X X X X X X X= + + + + + +r

 0 2 4 2 0 3 6 4 3 5 5 6X X X X X X= α + α + α + α + α + α + α (31)

In this example, there are four unknowns—two error locations and two error
values. Notice an important difference between the nonbinary decoding of r(X)
that we are faced with in Equation (31) and binary decoding; in binary decoding,
the decoder only needs to find the error locations [3]. Knowledge that there is an
error at a particular location dictates that the bit must be “flipped” from 1 to 0 or
vice versa. But here, the nonbinary symbols require that we not only learn the error
locations, but also determine the correct symbol values at those locations. Since
there are four unknowns in this example, four equations are required for their
solution.

24 Reed-Solomon Codes

Syndrome Computation
The syndrome is the result of a parity check performed on r to determine whether r
is a valid member of the codeword set [3]. If in fact r is a member, the syndrome S
has value 0. Any nonzero value of S indicates the presence of errors. Similar to the
binary case, the syndrome S is made up of n - k symbols, {Si} (i = 1, … , n - k).
Thus, for this (7, 3) R-S code, there are four symbols in every syndrome vector;
their values can be computed from the received polynomial, r(X). Note how the
computation is facilitated by the structure of the code, given by Equation (27) and
rewritten below:

 U(X) = m(X) g(X)

From this structure it can be seen that every valid codeword polynomial U(X) is a
multiple of the generator polynomial g(X). Therefore, the roots of g(X) must also
be the roots of U(X). Since r(X) = U(X) + e(X), then r(X) evaluated at each of
the roots of g(X) should yield zero only when it is a valid codeword. Any errors
will result in one or more of the computations yielding a nonzero result. The
computation of a syndrome symbol can be described as follows:

 () () 1, ,
ii X

iS X i n k
=α

== α = −r r L (32)

where r(X) contains the postulated two-symbol errors as shown in Equation (29).
If r(X) were a valid codeword, it would cause each syndrome symbol Si to equal 0.
For this example, the four syndrome symbols are found as follows:

1 (S 0 3 6 3 10 8 11

0 3 6 3 2 1 4

3

= α) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α

r
 (33)

2 (S 2 0 4 8 6 14 13 17

0 4 1 6 0 6 3

5

= α) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α

r
 (34)

 3 (S 3 0 5 10 9 18 18 23

0 5 3 2 4 4 2

6

= α) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= α

r
 (35)

4 (S 4 0 6 12 12 22 23 29

0 6 5 5 1 2 1

= α) = α + α + α + α + α + α + α
= α + α + α + α + α + α + α
= 0

r
 (36)

Reed-Solomon Codes 25

The results confirm that the received codeword contains an error (which we
inserted), since S≠0.

Example 3: A Secondary Check on the Syndrome Values

For the (7, 3) R-S code example under consideration, the error pattern is known,
since it was chosen earlier. An important property of codes when describing the
standard array is that each element of a coset (row) in the standard array has the
same syndrome [3]. Show that this property is also true for the R-S code by
evaluating the error polynomial e(X) at the roots of g(X) to demonstrate that it
must yield the same syndrome values as when r(X) is evaluated at the roots of
g(X). In other words, it must yield the same values obtained in Equations (33)
through (36).

Solution

 () () 1, 2, ,i
i

i X
S X i n k

=α
= = α = −r r L

 () () () ()i
i i

i XS X X = α

 = + = α + αU e U e

 () () () 0 ()i i i i
iS = α = α + α = + αr U e e

From Equation (29),

 e(X) = α2 X 3 + α5 X 4

Therefore,

1 (S 1 5 9

5 2

3

= α) = α + α
= α + α
= α

e

2 (S 2 8 13

1 6

5

= α) = α + α
= α + α
= α

e

continues

26 Reed-Solomon Codes

 continued

3 (S 3 11 17

4 3

6

= α) = α + α
= α + α
= α

e

4 (S 4 14 21

0 0

= α) = α + α
= α + α
= 0

e

These results confirm that the syndrome values are the same, whether obtained by
evaluating e(X) at the roots of g(X), or r(X) at the roots of g(X).

Error Location
Suppose there are ν errors in the codeword at location 1 2, , ... ,j j jX X X ν . Then,
the error polynomial e(X) shown in Equations (28) and (29) can be written as
follows:

2

1 2
1

() ...j j j
j j jX e X e X e X ν

ν
= + + +e (37)

The indices 1, 2, … ν refer to the first, second, …, νth errors, and the index j refers
to the error location. To correct the corrupted codeword, each error value

lje and

its location ljX , where l = 1, 2, ..., ν, must be determined. We define an error
locator number as lj

lβ =α . Next, we obtain the n - k = 2t syndrome symbols by
substituting αi into the received polynomial for i = 1, 2, … 2t:

1 21 1 2() ...j j jS e e e

ν ν= α = β + β + + βr

1 2

2 2 2
2 1 2() ...2

j j jS e e e
ν ν= α = β + β + + βr (38)

•
•
•

1 2

2 2 2 2
2 1 2() ...t t t t

j j jtS e e e
ν ν= α = β + β + + βr

Reed-Solomon Codes 27

There are 2t unknowns (t error values and t locations), and 2t simultaneous
equations. However, these 2t simultaneous equations cannot be solved in the usual
way because they are nonlinear (as some of the unknowns have exponents). Any
technique that solves this system of equations is known as a Reed-Solomon
decoding algorithm.

Once a nonzero syndrome vector (one or more of its symbols are nonzero) has
been computed, that signifies that an error has been received. Next, it is necessary
to learn the location of the error or errors. An error-locator polynomial, σ(X), can
be defined as follows:

2

1 2

() (1) (1) ... (1)

1 ...

X X X X

X X X

ν1 2

ν
ν

= + β + β + β

= + σ + σ + +σ

σ
 (39)

The roots of σ(X) are 1/β1, 1/β2, … ,1/βν. The reciprocal of the roots of σ(X) are
the error-location numbers of the error pattern e(X). Then, using autoregressive
modeling techniques [7], we form a matrix from the syndromes, where the first t
syndromes are used to predict the next syndrome. That is,

S1 S2 S3 ... St – 1 St σt –St + 1

S2 S3 S4 ... St St + 1 σt – 1

–St + 2

• • •
• • = •
• • •

(40)

St – 1 St St + 1 ... S2t – 3 S2t – 2 σ2 –S2t – 1

St St + 1 St + 2 ... S2t – 2 S2t – 1 σ1

–S2t

28 Reed-Solomon Codes

We apply the autoregressive model of Equation (40) by using the largest
dimensioned matrix that has a nonzero determinant. For the (7, 3) double-symbol-
error correcting R-S code, the matrix size is 2 × 2, and the model is written as
follows:

 21 2 3

12 3 4

S S S
S S S

σ
=σ (41)

3 5 62
5 6 1 0

σα α α=σα α
 (42)

To solve for the coefficients σ1 and σ2 and of the error-locator polynomial, σ(X),
we first take the inverse of the matrix in Equation (42). The inverse of a matrix [A]
is found as follows:

cofactor

Inv
det

A
A

A

=

Therefore,

 det
3 5

3 6 5 5 9 10
5 6

2 3 5

α α = α α − α α = α + α
α α

= α + α = α

 (43)

 cofactor
3 5 6 5α α α α

=
5 6 5 3α α α α

 (44)

Reed-Solomon Codes 29

Inv

6 5

5 33 5 6 5
−5

55 6 5 3

6 5 1 08 7
2

7 55 3 0 5

α α
α αα α α α

= = α
αα α α α

α α α αα α= α = =
α αα α α α

 (45)

Safety Check

If the inversion was performed correctly, the multiplication of the original matrix
by the inverted matrix should yield an identity matrix.

3 5

5 6

α α
α α

1 0 4 5 3 10

0 5 6 6 5 11

α α α + α α + α 1 0
= =

0 1α α α + α α + α
 (46)

Continuing from Equation (42), we begin our search for the error locations by
solving for the coefficients of the error-locator polynomial, σ(X).

σ
σ

1 0
2

0 5
1

α α
=
α α

7 06

6 6

α αα = =
0 α α

 (47)

From Equations (39) and (47), we represent σ(X) as shown below.

0 2
1 2

0 6 0 2

()X X X

X X

= α + σ + σ

= α + α + α

σ
 (48)

The roots of σ(X) are the reciprocals of the error locations. Once these roots are
located, the error locations will be known. In general, the roots of σ(X) may be one
or more of the elements of the field. We determine these roots by exhaustive

30 Reed-Solomon Codes

testing of the σ(X) polynomial with each of the field elements, as shown below.
Any element X that yields σ(X) = 0 is a root, and allows us to locate an error.

 σ(α0) = α0 + α6 + α0 = α6 ≠ 0

 σ(α1) = α0 + α7 + α2 = α2 ≠ 0

 σ(α2) = α0 + α8 + α4 = α6 ≠ 0

 σ(α2) = α0 + α8 + α4 = α6 ≠ 0

 σ(α3) = α0 + α9 + α6 = 0 => ERROR

 σ(α4) = α0 + α10 + α8 = 0 => ERROR

 σ(α5) = α0 + α11 + α10 = α2 ≠ 0

 σ(α6) = α0 + α12 + α12 = α0 ≠ 0

As seen in Equation (39), the error locations are at the inverse of the roots of the
polynomial. Therefore σ(α3) = 0 indicates that one root exits at 1/βl = α3. Thus,
βl = 1/α3 = α4. Similarly, σ(α4) = 0 indicates that another root exits at 1/βl′ = α4.
Thus, βl′ = 1/α4 = α3, where l and l′ refer to the first, second, …, νth error.
Therefore, in this example, there are two-symbol errors, so that the error
polynomial is of the following form:

1 2

1 2() j j
j jX e X e X= +e (49)

The two errors were found at locations α3 and α4. Note that the indexing of the
error-location numbers is completely arbitrary. Thus, for this example, we can
designate the lj

lβ = α values as 1 3
1

jβ = α = α and 2
2

4.jβ = α = α

Error Values

An error had been denoted
lj

e , where the index j refers to the error location and the
index l identifies the lth error. Since each error value is coupled to a particular
location, the notation can be simplified by denoting

lj
e , simply as

l
e . Preparing to

determine the error values e1 and e2 associated with locations β1 = α3 and β2 = α4,

Reed-Solomon Codes 31

any of the four syndrome equations can be used. From Equation (38), let’s use S1
and S2.

1 21 1 2()S e e= α = β + βr (50)

1 2

2 2 2
2 1 2()S e e= α = β + βr

We can write these equations in matrix form as follows:

 1 1

2 2

e S
e S

1 2
2 2
1 2

β β
=

β β
 (51)

 1

2

e
e

3 4 3

56 8

α α α=
αα α

 (52)

To solve for the error values e1 and e2, the matrix in Equation (52) is inverted in the
usual way, yielding

Inv

1 4

6 33 4

3 1 6 46 1

1 4

6 3 1 4 1 4
−6 1

4 3 6 3 6 3

2 5 2 5

7 4 0 4

α α
α αα α

=
α α − α αα α

α α
α α α α α α

= = α = α
α + α α α α α

α α α α
= =

α α α α

 (53)

Now, we solve Equation (52) for the error values, as follows:

 1

2

e
e

2 5 5 10 5 33 2

5 50 4 3 9 3 2

α α α +α α +αα α= = = =
α αα α α +α α +α

 (54)

32 Reed-Solomon Codes

Correcting the Received Polynomial with Estimates of the Error Polynomial

From Equations (49) and (54), the estimated error polynomial is formed, to yield
the following:

$ 1 2

1 2
2 3 5 4

) j jX e X e X
X X

(= +
= α + α

e
 (55)

The demonstrated algorithm repairs the received polynomial, yielding an estimate
of the transmitted codeword, and ultimately delivers a decoded message. That is,

 Û(X) = r(X) + ê(X) = U(X) + e(X) + ê(X) (56)

r(X) = (100) + (001)X + (011)X 2 + (100)X 3 + (101)X 4 + (110)X 5 + (111)X 6

ê(X) = (000) + (000)X + (000)X 2 + (001)X 3 + (111)X 4 + (000)X 5 + (000)X 6

Û(X) = (100) + (001)X + (011)X 2 + (101)X 3 + (010)X 4 + (110)X 5 + (111)X 6

 = α0 + α2X + α4X 2 + α6X 3 + α1X 4 + α3X 5 + α5X 6 (57)

Since the message symbols constitute the rightmost k = 3 symbols, the decoded
message is

 {{ {
51 3 αα α

010 110 111

which is exactly the test message that was chosen earlier for this example. For
further reading on R-S coding, see the collection of papers in reference [8].

Conclusion
In this article, we examined Reed-Solomon (R-S) codes, a powerful class of
nonbinary block codes, particularly useful for correcting burst errors. Because
coding efficiency increases with code length, R-S codes have a special attraction.
They can be configured with long block lengths (in bits) with less decoding time

Reed-Solomon Codes 33

than other codes of similar lengths. This is because the decoder logic works with
symbol-based rather than bit-based arithmetic. Hence, for 8-bit symbols, the
arithmetic operations would all be at the byte level. This increases the complexity
of the logic, compared with binary codes of the same length, but it also increases
the throughput.

References
[1] Reed, I. S. and Solomon, G., “Polynomial Codes Over Certain Finite

Fields,” SIAM Journal of Applied Math., vol. 8, 1960, pp. 300-304.

[2] Gallager, R. G., Information Theory and Reliable Communication (New
York: John Wiley and Sons, 1968).

[3] Sklar, B., Digital Communications: Fundamentals and Applications, Second
Edition (Upper Saddle River, NJ: Prentice-Hall, 2001).

[4] Odenwalder, J. P., Error Control Coding Handbook, Linkabit Corporation,
San Diego, CA, July 15, 1976.

[5] Berlekamp, E. R., Peile, R. E., and Pope, S. P., “The Application of Error
Control to Communications,” IEEE Communications Magazine, vol. 25, no.
4, April 1987, pp. 44-57.

[6] Hagenauer, J., and Lutz, E., “Forward Error Correction Coding for Fading
Compensation in Mobile Satellite Channels,” IEEE JSAC, vol. SAC-5, no. 2,
February 1987, pp. 215-225.

[7] Blahut, R. E., Theory and Practice of Error Control Codes (Reading, MA:
Addison-Wesley, 1983).

[8] Wicker, S. B. and Bhargava, V. K., ed., Reed-Solomon Codes and Their
Applications (Piscataway, NJ: IEEE Press, 1983).

About the Author
Bernard Sklar is the author of Digital Communications: Fundamentals and
Applications, Second Edition (Prentice-Hall, 2001, ISBN 0-13-084788-7).

Reed-Solomon Codes

Reed-Solomon codes

In these notes we examine Reed-Solomon codes, from a computer science point of view.

Reed-Solomon codes can be used as both error-correcting and erasure codes. In the error-correcting setting,
we wish to transmit a sequence of numbers over a noisy communication channel. The channel noise might cause
the data sent to arrive corrupted. In the erasure setting, the channel might fail to send our message. For both cases,
we handle the problem of noise by sending additional information beyond the original message. The data sent is an
encoding of the original message. If the noise is small enough, the additional information will allow the original
message to be recovered, through a decoding process.

Encoding

Let us suppose that we wish to transmit a sequence of numbers b0,b1, . . . ,bd−1. To simplify things, we will
assume that these numbers are in GF(p), i.e., our arithmetic is all done modulo p. In practice, we want to reduce
everything to bits, bytes, and words, so we will later discuss how to compute over fields more conducive to this
setting, namely fields of the form GF(2r).

Our encoding will be a longer sequence of numbers e0,e1, . . . ,en−1, where we require that p > n. We derive the
e sequence from our original b sequence by using the b sequence to define a polynomial P, which we evaluate at n
points. There are several ways to do this; here are two straightforward ones:

• Let P(x) = b0 + b1x+ b2x2 + . . .bd−1xd−1. This representation is convenient since it requires no computation
to define the polynomial. Our encoding would consist of the values P(0),P(1), . . . ,P(n− 1). (Actually, our
encoding could be the evalution of P at any set of n points; we choose this set for convenience. Notice that we
need p > n, or we can’t choose n distinct points!)

• Let P(x) = c0 + c1x + c2x2 + . . .cd−1xd−1 be such that P(0) = b0, P(1) = b1, . . . , P(d − 1) = bd−1. Our
encoding e0,e1, . . . ,en−1 would consist of the values P(0),P(1), . . . ,P(n− 1). Although this representation
requires computing the appropriate polynomial P, it has the advantage that our original message is actually
sent as part of the encoding. A code with this property is called a systematic code. Systematic codes can
be useful; for example, if there happen to be no erasures or errors, we might immediately be able to get our
message on the other end.

The polynomial P(x) can be found by using a technique known as Lagrange interpolation. We know that
there is a unique polynomial of degree d −1 that passes through d points. (For example, two points uniquely
determine a line.) Given d points (a0,b0), . . . ,(ad−1,bd−1), it is easy to check that

P(x) =
d−1

∑
j=0

bj ∏
k �= j

x−ak

a j −ak

is a polynomial of degree d −1 that passes through the points. (To check this, note that∏k �= j
x−ak
a j−ak

is 1 when
x = aj and 0 when x = ak for k �= j.)

Note that in either case, the encoded message is just a set of values obtained from a polynomial. The important
point is not which actual polynomial we use (as long as the sender and receiver agree!), but just that we use a
polynomial that is uniquely determined by the data values.

0-1

We will also have to assume that the sender and receiver agree on a system so that when the encoded information
ei arrives at the receiver, the receiver knows it corresponds to the value P(i). If all the information is sent and arrives
in a fixed order, this of course is not a problem. In the case of erasures, we must assume that when an encoded value
is missing, we know that it is missing. For example, when information is sent over a network, usually the value i is
derived from a packet header; hence we know when we receive a value ei which number i it corresponds to.

Decoding
Let us now consider what must be done at the end of the receiver. The receiver must determine the polynomial

from the received values; once the polynomial is determined, the receiver can determine the original message values.
(In the first approach above, the coefficients of the polynomial are the message values; in the second, given the
polynomial the message is determined by computing P(0), P(1), etc.)

Let us first consider the easier case, where there are erasures, but no errors. Suppose that just d (correct) values
e j1 ,e j2 , . . . ,e jd arrive at the receiver. No matter which d values, the receiver can determine the polynomial, just by
using Lagrange interpolation! Note that the polynomial the receiver computes must match P, since there is a unique
polynomial of degree d −1 passing through d points.

What if there are errors, instead of erasures? (By the way, if there are erasures and errors, notice that we can
pretend an erasure is an error, just by filling the erased value with a random value!) This is much harder. When there
were only erasures, the receiver knows which values they received and that they are all correct. Here the receiver
has obtained n values, f0, f1, . . . , fn−1, but has no idea which ones are correct.

We show, however, that as long as at most k received values are in error, that is fj �= e j at most k times, then the
original message can be determined whenever k ≤ n−d

2 . Notice that we can make n as large as we like. If we know a
bound on error rate in advance, we can choose n accordingly. By making n sufficiently large, we can deal with error
rates of up to 50%. (Of course, recall that we need p > n.)

The decoding algorithm we cover is due to Berlekamp and Welch. An important concept for the decoding is
an error polynomial. An error polynomial E(x) satifies E(i) = 0 if fi �= ei. That is, the polynomial E marks the
positions where we have received erroneous values. Without loss of generality, we can assume that E has degree k
and is monic (that is, the leasing coefficient is 1), since we can choose E to be∏i: fi �=ei

(x− i) if there are k errors, and
throw extra terms x− i in the product where fi equals ei if there are fewer than k errors.

Now consider the following interesting (and somewhat magical) setup: we claim that there exist polynomials
V (x) of degree at most d −1+ k and monic W (x) of degree at most k satisfying

V (i) = fiW (i).

Namely, we can let W (x) = E(x), and V (x) = P(x) ·E(x). It is easy to check that V (i) and W (i) are both 0 when
fi �= ei, and are both eiW (i) otherwise. So, if someone handed us these polynomials V and W , we could find P(x),
since P(x) = V (x)/W (x).

There are two things left to check. First, we need to show how to find polynomials V and W satisfying V (i) =
fiW (i). Second, we need to check that when we find these polynomials, we don’t somehow find a wrong pair of
polynomials that do not satisfy V (x)/W (x) = P(x). For example, a priori we could find a polynomial D that was
different from E!

First, we show that we can find an V and W efficiently. Let v0,v1, . . . ,vd+k−1 be the coefficients of V and
w0,w1, . . . ,wk be the coefficients of W . Note we can assume wk = 1. Then the equations V (i) = fiW (i) give n linear
equations in the coefficients of V and W , so that we have n equations and d +2k ≤ n unknowns. Hence a pair V and
W can be found by solving a set of linear equations.

0-2

Since we know a solution V and W exist, the set of linear equations will have a solution. But it could also have
many solutions. However, any solution we obtain will satisfy V (x)/W (x) = P(x). To see this, let us suppose we
have two pairs of solutions (V1,W1) and (V2,W2). Clearly V1(i)W2(i) fi = V2(i)W1(i) fi. If fi does not equal 0, then
V1(i)W2(i) = V2(i)W1(i) by cancellation. But if fi does equal 0, then V1(i)W2(i) =V2(i)W1(i) since then V1(i) =V2(i)
= 0. But this means that the polynomials V1W2 and V2W1 must be equal, since they agree on n points and each has
degree d + 2k − 1 < n. But if these polynomials are equal, then V1(x)/W1(x) = V2(x)/W2(x). Since any solution
(V,W) yields the same ratio V (x)/W (x), this ratio must always equal P(x)!

Arithmetic in GF(2r)
In practice, we want our Reed-Solomon codes to be very efficient. In this regard, working in GF(p) for some

prime is inconvenient, for several reasons. Let us suppose it is most convenient if we work in blocks of 8 bits. If we
work in GF(251), we are not using all the possibilities for our eight bits. Besides being wasteful, this is problematic
if our data (which may come from text, compressed data, etc.) contains a block of eight bits which corresponds to
the number 252!

It is therefore more natural to work in a field with 2r elements, or GF(2r). Arithmetic is this field is done
by finding an irreducible (prime) polynomial π(x) of degree r, and doing all arithmetic in Z2[π(x)]. That is, all
coefficients are modulo 2, arithmetic is done modulo π(x), and π(x) should not be able to be factored over GF(2).

For example, for GF(28), an irreducible polynomial is π(x) = x8 + x6 + x5 + x + 1. A byte can naturally be
though of as a polynomial in the field. For example, by letting the least significant bit represent x0, and the ith least
significant bit represent xi, we have that the byte 10010010 represents the polynomial x7 +x4 +x. Adding in GF(2r)
is easy: since all coefficients are modulo 2, we can just XOR two bytes together. For example

10010010+ 10101010 = 00111000

(x7 + x4 + x)+ (x7 + x5 + x3 + x) = x5 + x4 + x3.

Moreover, subtracting is just the same as adding!

Multiplication is slightly harder, since we work modulo π(x). As an example

(x4 + x) · (x4 + x2) = x8 + x6 + x5 + x3.

However, we must reduce this so that we can fit it into a byte. As we work modulo π(x), we have that π(x) = 0, or
x8 = x6 + x5 + x+ 1. Hence

(x4 + x) · (x4 + x2) = x8 + x6 + x5 + x3 = (x6 + x5 + x+ 1)+ x6 + x5 + x3 = x3 + x+ 1,

and hence
00010010 ·00010100 = 00001011.

Rather than compute these products on the fly, all possible 256 ·256 pairs can be precomputed once in the beginning,
and then all multiplications are done by just doing a lookup in the multiplication lookup table. Hence by using
memory and preprocessing, one can work in GF(28) and still obtain great speed.

Reed-Solomon codes work exactly the same over GF(2r) as they do over GF(p), since in both cases the main
reqiurement, namely that a polynomial of degree d −1 be uniquely defined by d points, is satisfied.

0-3

2/16/10 4:50 PMreed-solomon codes

Page 1 of 6http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/reedsolomon/reed_solomon_codes.html

Reed-Solomon Codes
An introduction to Reed-Solomon codes: principles, architecture and implementation

1. Introduction

Reed-Solomon codes are block-based error correcting codes with a wide range of applications in digital
communications and storage. Reed-Solomon codes are used to correct errors in many systems including:

Storage devices (including tape, Compact Disk, DVD, barcodes, etc)
Wireless or mobile communications (including cellular telephones, microwave links, etc)
Satellite communications
Digital television / DVB
High-speed modems such as ADSL, xDSL, etc.

A typical system is shown here:

The Reed-Solomon encoder takes a block of digital data and adds extra "redundant" bits. Errors occur
during transmission or storage for a number of reasons (for example noise or interference, scratches on a
CD, etc). The Reed-Solomon decoder processes each block and attempts to correct errors and recover the
original data. The number and type of errors that can be corrected depends on the characteristics of the
Reed-Solomon code.

2. Properties of Reed-Solomon codes

Reed Solomon codes are a subset of BCH codes and are linear block codes. A Reed-Solomon code is
specified as RS(n,k) with s-bit symbols.

This means that the encoder takes k data symbols of s bits each and adds parity symbols to make an n
symbol codeword. There are n-k parity symbols of s bits each. A Reed-Solomon decoder can correct up to t
symbols that contain errors in a codeword, where 2t = n-k.

The following diagram shows a typical Reed-Solomon codeword (this is known as a Systematic code
because the data is left unchanged and the parity symbols are appended):

Example: A popular Reed-Solomon code is RS(255,223) with 8-bit symbols. Each
codeword contains 255 code word bytes, of which 223 bytes are data and 32 bytes
are parity. For this code:

2/16/10 4:50 PMreed-solomon codes

Page 2 of 6http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/reedsolomon/reed_solomon_codes.html

n = 255, k = 223, s = 8

2t = 32, t = 16

The decoder can correct any 16 symbol errors in the code word: i.e. errors in up to
16 bytes anywhere in the codeword can be automatically corrected.

Given a symbol size s, the maximum codeword length (n) for a Reed-Solomon code is n = 2s – 1

For example, the maximum length of a code with 8-bit symbols (s=8) is 255 bytes.

Reed-Solomon codes may be shortened by (conceptually) making a number of data symbols zero at the
encoder, not transmitting them, and then re-inserting them at the decoder.

Example: The (255,223) code described above can be shortened to (200,168). The
encoder takes a block of 168 data bytes, (conceptually) adds 55 zero bytes, creates
a (255,223) codeword and transmits only the 168 data bytes and 32 parity bytes.

The amount of processing "power" required to encode and decode Reed-Solomon codes is related to the
number of parity symbols per codeword. A large value of t means that a large number of errors can be
corrected but requires more computational power than a small value of t.

Symbol Errors

One symbol error occurs when 1 bit in a symbol is wrong or when all the bits in a symbol are wrong.

Example: RS(255,223) can correct 16 symbol errors. In the worst case, 16 bit errors
may occur, each in a separate symbol (byte) so that the decoder corrects 16 bit
errors. In the best case, 16 complete byte errors occur so that the decoder corrects
16 x 8 bit errors.

Reed-Solomon codes are particularly well suited to correcting burst errors (where a series of bits in the
codeword are received in error).

Decoding

Reed-Solomon algebraic decoding procedures can correct errors and erasures. An erasure occurs when the
position of an erred symbol is known. A decoder can correct up to t errors or up to 2t erasures. Erasure
information can often be supplied by the demodulator in a digital communication system, i.e. the
demodulator "flags" received symbols that are likely to contain errors.

When a codeword is decoded, there are three possible outcomes:

1. If 2s + r < 2t (s errors, r erasures) then the original transmitted code word will always be recovered,

OTHERWISE

2. The decoder will detect that it cannot recover the original code word and indicate this fact.

OR

3. The decoder will mis-decode and recover an incorrect code word without any indication.

The probability of each of the three possibilities depends on the particular Reed-Solomon code and on the

2/16/10 4:50 PMreed-solomon codes

Page 3 of 6http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/reedsolomon/reed_solomon_codes.html

number and distribution of errors.

Coding Gain

The advantage of using Reed-Solomon codes is that the probability of an error remaining in the decoded
data is (usually) much lower than the probability of an error if Reed-Solomon is not used. This is often
described as coding gain.

Example: A digital communication system is designed to operate at a Bit Error
Ratio (BER) of 10-9, i.e. no more than 1 in 109 bits are received in error. This can
be achieved by boosting the power of the transmitter or by adding Reed-Solomon
(or another type of Forward Error Correction). Reed-Solomon allows the system to
achieve this target BER with a lower transmitter output power. The power "saving"
given by Reed-Solomon (in decibels) is the coding gain.

3. Architectures for encoding and decoding Reed-Solomon codes

Reed-Solomon encoding and decoding can be carried out in software or in special-purpose hardware.

Finite (Galois) Field Arithmetic

Reed-Solomon codes are based on a specialist area of mathematics known as Galois fields or finite fields. A
finite field has the property that arithmetic operations (+,-,x,/ etc.) on field elements always have a result in
the field. A Reed-Solomon encoder or decoder needs to carry out these arithmetic operations. These
operations require special hardware or software functions to implement.

Generator Polynomial

A Reed-Solomon codeword is generated using a special polynomial. All valid codewords are exactly
divisible by the generator polynomial. The general form of the generator polynomial is:

and the codeword is constructed using:

c(x) = g(x).i(x)

where g(x) is the generator polynomial, i(x) is the information block, c(x) is a valid codeword and a is
referred to as a primitive element of the field.

Example: Generator for RS(255,249)

3.1 Encoder architecture

The 2t parity symbols in a systematic Reed-Solomon codeword are given by:

The following diagram shows an architecture for a systematic RS(255,249) encoder:

2/16/10 4:50 PMreed-solomon codes

Page 4 of 6http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/reedsolomon/reed_solomon_codes.html

Each of the 6 registers holds a symbol (8 bits). The arithmetic operators carry out finite field addition or
multiplication on a complete symbol.

3.2 Decoder architecture

A general architecture for decoding Reed-Solomon codes is shown in the following diagram.

Key

r(x) Received codeword
Si Syndromes
L(x) Error locator polynomial
Xi Error locations
Yi Error magnitudes
c(x) Recovered code word
v Number of errors

The received codeword r(x) is the original (transmitted) codeword c(x) plus errors:

r(x) = c(x) + e(x)

A Reed-Solomon decoder attempts to identify the position and magnitude of up to t errors (or 2t erasures)
and to correct the errors or erasures.

Syndrome Calculation

This is a similar calculation to parity calculation. A Reed-Solomon codeword has 2t syndromes that depend
only on errors (not on the transmitted code word). The syndromes can be calculated by substituting the 2t
roots of the generator polynomial g(x) into r(x).

Finding the Symbol Error Locations

2/16/10 4:50 PMreed-solomon codes

Page 5 of 6http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/reedsolomon/reed_solomon_codes.html

This involves solving simultaneous equations with t unknowns. Several fast algorithms are available to do
this. These algorithms take advantage of the special matrix structure of Reed-Solomon codes and greatly
reduce the computational effort required. In general two steps are involved:

Find an error locator polynomial

This can be done using the Berlekamp-Massey algorithm or Euclid’s algorithm. Euclid’s
algorithm tends to be more widely used in practice because it is easier to implement: however,
the Berlekamp-Massey algorithm tends to lead to more efficient hardware and software
implementations.

Find the roots of this polynomial

This is done using the Chien search algorithm.

Finding the Symbol Error Values

Again, this involves solving simultaneous equations with t unknowns. A widely-used fast algorithm is the
Forney algorithm.

4. Implementation of Reed-Solomon encoders and decoders

Hardware Implementation

A number of commercial hardware implementations exist. Many existing systems use "off-the-shelf"
integrated circuits that encode and decode Reed-Solomon codes. These ICs tend to support a certain amount
of programmability (for example, RS(255,k) where t = 1 to 16 symbols). A recent trend is towards VHDL
or Verilog designs (logic cores or intellectual property cores). These have a number of advantages over
standard ICs. A logic core can be integrated with other VHDL or Verilog components and synthesized to an
FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit) – this enables
so-called "System on Chip" designs where multiple modules can be combined in a single IC. Depending on
production volumes, logic cores can often give significantly lower system costs than "standard" ICs. By
using logic cores, a designer avoids the potential need to do a "lifetime buy" of a Reed-Solomon IC.

Software Implementation

Until recently, software implementations in "real-time" required too much computational power for all but
the simplest of Reed-Solomon codes (i.e. codes with small values of t). The major difficulty in
implementing Reed-Solomon codes in software is that general purpose processors do not support Galois
field arithmetic operations. For example, to implement a Galois field multiply in software requires a test for
0, two log table look-ups, modulo add and anti-log table look-up. However, careful design together with
increases in processor performance mean that software implementations can operate at relatively high data
rates. The following table gives some example benchmark figures on a 166MHz Pentium PC:

Code Data rate

RS(255,251) 12 Mbps

RS(255,239) 2.7 Mbps

2/16/10 4:50 PMreed-solomon codes

Page 6 of 6http://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/reedsolomon/reed_solomon_codes.html

RS(255,223) 1.1 Mbps

These data rates are for decoding only: encoding is considerably faster since it requires less computation.

5. Further reading

In this paper we have deliberately avoided discussing the theory and implementation of Reed-Solomon
codes in detail. For more detail please see the following books:

1.Wicker, "Error Control Systems for Digital Communication and Storage", Prentice-Hall 1995

2. Lin and Costello, "Error Control Coding: Fundamentals and Applications", Prentice-Hall 1983

3. Clark and Cain, "Error Correction Coding for Digital Communications", Plenum 1988

4. Wilson, "Digital Modulation and Coding", Prentice-Hall 1996

6. About the authors

This paper was written by Martyn Riley and Iain Richardson. For more details about the authors click here.

Copyright © 4i2i Communications Ltd 1996, 1997, 1998

http://www.4i2i.com/employees.htm#Managing%20Director%20-%20%20Martyn%20J.%20Riley

	Introduction
	Problem definition
	Constructing the checksums
	Words
	Simplifying the problem
	Example, RAID-4 as RS-RAID
	Restating the problem
	Vandermonde matrix
	Changing a single word
	Recovering from failures
	Galois fields
	Primes
	$GF(2^w)$
	$GF(4)$
	Efficient arithmetic
	Primitive polynomial
	Multiplication
	$GF(16)$
	$GF(16)$
cont.
	Summary
	Conclusions
	
	/Users/donsauer/Downloads/today_now/Graphic_Apps/FORMATS/reedsoloman/TAMU-List.pdf
	~
	The Problem of Information Transmission
	The Problem of Information Transmission
	The Problem of Information Transmission
	Shannon (1948)
	Shannon's theorem
	Constructive versions
	Hamming (1950)
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming

	~
	Motivation: {�rown {[Singleton]}} Bound
	Motivation: {�rown {[Singleton]}} Bound
	Motivation: {�rown {[Singleton]}} Bound
	Motivation: {�rown {[Singleton]}} Bound
	Motivation: {�rown {[Singleton]}} Bound

	Reed-Solomon Codes
	Reed-Solomon Codes (formally)
	~
	Reed-Solomon Decoding
	Algorithm Description mcite {S. '96}
	Algorithm Description mcite {S. '96}
	Algorithm Description mcite {S. '96}
	Algorithm Description mcite {S. '96}
	Algorithm Description mcite {S. '96}

	What Happened?
	Generally
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?

	~
	Going Further: Example 2 mcite {Guruswami+S. '98}
	Going Further: Example 2 mcite {Guruswami+S. '98}
	Going Further: Example 2 mcite {Guruswami+S. '98}
	Going Further: Example 2 mcite {Guruswami+S. '98}

	Going Further: Example 2 mcite {Guruswami+S. '98}
	Going Further: Example 2 mcite {Guruswami+S. '98}
	Going Further: Example 2 mcite {Guruswami+S. '98}

	Where was the gain?
	Summary
	Summary
	Summary
	Summary

	The Polynomial Method
	The Polynomial Method
	The Polynomial Method

	Kakeya Sets
	Kakeya Sets
	Kakeya Sets
	Kakeya Sets
	Kakeya Sets
	Kakeya Sets

	Polynomial Method and Kakeya Sets
	Polynomial Method and Kakeya Sets
	Polynomial Method and Kakeya Sets
	Polynomial Method and Kakeya Sets

	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions

	$,$

	Microsoft Word - art_sklar7_reed-solomon revised.doc
	eccnotes.dvi
	reed-solomon codes

