

Think of a voltage comparator which has multiple bits of output.
Such a comparator will try and track an moving input signal to an LSB resolution. It only takes the following six lines of spice code to create an ideal 3Bit ADC followed by a DAC.

BTHO	D0	0	V	u(V (VIN)	-1/2)
BOFFO	VIN	OFFO	$\mathrm{V}=$	V(DO) /2	
BTH1	D1	0	$\mathrm{V}=$	u(V (OFFO)	-1/4)
BOFF1	OFFO	OFF1	$\mathrm{V}=$	$\mathrm{V}(\mathrm{D} 1) / 4$	
BTH2	D2	0	V	u(V (OFF1)	-1/8)
BDAC	VOUT	0	$\mathrm{V}=$	$\mathrm{V}(\mathrm{DO}) / 2+\mathrm{V}$ (1) / 4+

But the data is being captured in a way that is much different than a normal.
A Normal ADC captures the input when it is within a LSB voltage range at a precise time. This type of sampling detects the input crossing a precise voltage at a precise time. In other words, it samples only when something happens.
It can be called a Asynchronous Analog to Digital Convertor or AADC for short.

The spectrum of a 3Bit AADC is much different.
A normal ADC has a noise floor defined by the LSB magnitude.
And it displays images of the input signal mirrored around the sample frequency.
Since the AADC has no sample rate, there are no aliasing images.
The spectrum is actually two different types of distortion for the sine-wave example.
There is triangle wave distortion and endpoint distortion.

mv - vin -vout

Adding more stages can simulate a 8Bit ADDC.

At 8Bits, two different types of distortion have undergone some shifts in frequency and magnitude. But still, the LSB resolution of the AADC is not producing a noise floor. It is producing a distortion floor level instead.

Simple_Asynchronous_ADC_FFT

8.18.11_2.01PM

dsauersānjose@aol.com
Don Sauer

